簡易檢索 / 詳目顯示

研究生: 陳瑩芝
論文名稱: 兩性離子型水膠作為自養護劑之研究
指導教授: 許貫中
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 135
中文關鍵詞: 兩性離子型水膠自養護劑砂漿吸水率
論文種類: 學術論文
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為延續可敬學長的方法,製備一種兩性離子型的高吸水性水膠,使用丙烯醯胺和disodium 1-(4-(3-((carboxylatomethyl)dimethylammonio)propylamino)- 4-oxobut-2-enoate)(CDP)為單體,交聯劑為MBA,起始劑為APS聚合而成的poly(AAm-co-CDP)。使用FT-IR作結構鑑定,樣品表面孔洞透過電子顯微鏡觀察,影響反應的參數包括:單體比例、起始劑劑量、交聯劑劑量和反應溫度,接著浸泡到純水和鹽水中測其吸水率。接著評估PCA水膠加到水泥漿和水泥砂漿中作為自養護劑是否合宜,於水泥漿中探討其水化程度、圓盤裂縫和凝結時間;水泥砂漿中則探討水分重量損失、抗壓強度、內部濕度和乾縮量。
    實驗結果顯示,當單體比例= 0.67 (mol/mol),MBA劑量= 0.5 mol%,APS劑量= 1.3 mol%,反應溫度75℃,PCA水膠在純水中的吸水率為421(g/g),0.1M NaCl(aq) 和0.1M CaCl2(aq)的吸水率分別為46.4、40.2 (g/g)。將PCA水膠加入水泥砂漿中當自養護劑,最佳添加劑量為0.25wt%,對水泥砂漿試體的重量損失、抗壓強度、內部濕度和乾縮量與未添加水膠的控制組相比,均有提升效果。
    接著在水泥漿中發現,添加水膠在初期會延緩水化程度,但後期則會使水泥水化更完整。在圓盤裂縫測試中,發現水膠添加能有效減少裂縫生成,但添加量過多卻會造成表面缺陷。添加水膠會使水泥漿提前初凝時間,延緩終凝時間。

    This main goal of thesis is contium how to prepare a zwitterionic superabsorbent hydrogel. Poly (AAm-co-CDP) is synthesized by acrylamide and disodium 1-(4-(3-((carboxylatomethyl) dimethylammonio)propylamino)-4-oxobut-2-enoate) (CDP) as monomer、MBA as crosslinker, and APS as initiator. Using FT-IR to identify structure,surface porosity is observed by TM-1000. The parameters what could be effected experiment are monomer ratio,initiator dosage, crosslinker dosage, and reaction temperature. Then
    measure hydrogel water absorbency in water and saline solution. We estimate is it reasonable which using PCA hydrogel add into cement paste and mortar as self-curing reagent. Then we researched hydration degree,
    cracking index, and setting time in cement paste. We calculated weight-loss, compressive strength, internal humidity, and drying shrinkage.
    The result indicate that when in the optimum recipe, PCA hydrogel water absorbency is 420 g/g in water, in 0.1M NaCl(aq) is 46.4,and 40.2 g/g in 0.1M CaCl2(aq). When we add PCA hydrogel into mortar as self-curing reagent, the optimum dosage is 0.25 wt%, in this condition,improve performance in weight-loss, compressive strength, internal
    humidity, and drying shrinkage are better than control group which not adding PCA hydrogel. In cement paste, add PCA hydrogel would retard hydration in initial stage, retard initial setting time, also reduce craking formation.

    摘要 2 Abstract 4 謝誌 6 目錄 7 圖目錄 12 表目錄 15 第一章 緒論 16 1-1 研究背景 16 1-2 研究目的 18 1-3 研究內容 18 第二章 文獻回顧 20 2-1 水膠之簡介 20 2-2 影響水膠膨潤之作用力 21 2-2-1 交聯密度 22 2-2-2 離子強度 23 2-3 水膠的種類 23 2-4 水膠的應用 26 2-5 高吸水性水膠相關文獻彙集 30 2-6 水泥 32 2-6-1 卜特蘭水泥之組成 32 2-6-2 水泥之水化 32 2-7 水泥漿水分存在形式 34 2-8 混凝土收縮變形種類 38 2-9 養護之分類 38 第三章 合成實驗流程與方法 42 3-1 實驗簡介 42 3-2 實驗材料與實驗設備 45 3-2-1 藥品清單 45 3-2-2 水泥、砂和強塑劑 45 3-2-3 實驗設備 46 3-3 實驗方法 48 3-3-1 DAPA之合成 48 3-3-2 CDP之合成 49 3-3-3 PCA之合成 50 3-4 聚合物PCA結構鑑定及性質分析 52 3-4-1 紅外線 (IR) 光譜分析 52 3-4-2 核磁共振 (1H-NMR) 光譜分析 52 3-4-5 水膠釋水之測量 53 3-5 聚合物PCA對水泥漿之性質分析 54 3-6 聚合物PCA對水泥砂漿之性質分析 58 3-7 實驗配比 61 第四章 結果與討論 65 4-1 結構鑑定 65 4-1-1 DAPA 結構鑑定 67 4-1-2 CDP結構鑑定 69 4-1-3 PCA 結構鑑定 70 4-2 PCA水膠之孔洞結構 75 4-3 反應條件對PCA水膠吸水率之影響 75 4-3-1單體比例對PCA吸水率之影響 75 4-3-2 交聯劑劑量對PCA吸水率之影響 78 4-3-3 起始劑劑量對PCA吸水率之影響 80 4-3-4 反應溫度對PCA吸水率之影響 82 4-4鹽水溶液對PCA水膠吸水率之影響 84 4-4-1 鹽水濃度對PCA水膠吸水率之影響 85 4-4-2不同陽離子價數對PCA水膠吸水率之影響 87 4-5 PCA水膠在pore solution中的吸水率 89 4-6 BC283HA水膠之性質 93 4-7 PCA水膠對水泥砂漿試體性質之影響 97 4-7-1 水膠預先吸水對砂漿試體重量損失之影響 97 4-7-2 水膠劑量對水泥砂漿試體重量損失之影響 100 4-7-3 水膠劑量對試體內部濕度之測量 104 4-7-4 水膠劑量對砂漿抗壓強度之影響 106 4-7-5 水膠劑量對砂漿乾縮量之影響 109 4-8 水膠對水泥漿體之影響與試驗 111 4-8-1 XRD定性分析 111 4-8-2 DSC分析 115 4-8-3 水膠劑量對圓盤試體裂縫之影響 120 4-8-4 水膠劑量對凝結時間之影響 124 4-9 小結 126 第五章 結論 127 第六章 參考文獻 129

    1. Burr, R.C., G.F. Fanta, and W.M. Doane, Graft polymerization of starch with mixtures of acrylonitrile and 2-acrylamido-2-methylpropanesulfonic acid. Journal of Applied Polymer Science, 1979. 24(5): p. 1387-1390.
    2. Jensen, O.M. and P.F. Hansen, Water-entrained cement-based materials II. Experimental observations. Cement and Concrete Research, 2002. 32(6): p. 973-978.
    3. Lura, P., O. Jensen, and S. Igarashi, Experimental observation of internal water curing of concrete. Materials and Structures, 2007. 40(2): p. 211-220.
    4. Hoffman, A.S., Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2002. 54(1): p. 3-12.
    5. Eichenbaum, G., et al., Investigation of the swelling response and drug loading of ionic microgels: The dependence on functional group composition. Macromolecules, 1999. 32(26): p. 8996-9006.
    6. Zhang, X.-Z., et al., Preparation and Characterization of Fast Response Macroporous Poly(N-isopropylacrylamide) Hydrogels. Langmuir, 2001. 17(20): p. 6094-6099.
    7. 佘勝雄, 利用二階段自由基共聚合製備酸鹼應答型水膠及性質探討. 中興大學化學工程研究所, 2002.
    8. Chen, X.P., et al., Synthesis and properties of acrylic-based superabsorbent. Journal of Applied Polymer Science, 2004. 92(1): p. 619-624.
    9. Pourjavadi, A., S. Barzegar, and G.R. Mahdavinia, MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydrate Polymers, 2006. 66(3): p. 386-395.
    10. Baker, J., H. Blanch, and J. Prausnitz, Swelling properties of acrylamide-based ampholytic hydrogels: Comparison of experiment with theory. POLYMER-LONDON-, 1995. 36: p. 1061-1061.
    11. Xu, S., et al., Salt and pH responsive property of a starch-based amphoteric superabsorbent hydrogel with quaternary ammonium and carboxyl groups (II). Journal of Applied Polymer Science, 2006. 101(3): p. 1995-1999.
    12. Xiao, C. and N. Geng, Tailored preparation of dual phase concomitant methylcellulose/poly(vinyl alcohol) physical hydrogel with tunable thermosensivity. European Polymer Journal, 2009. 45(4): p. 1086-1091.
    13. Chang, C., et al., Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal, 2009. 46(1): p. 92-100.
    14. Wang, W. and A. Wang, Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydrate Polymers, 2010. 80(4): p. 1028-1036.
    15. Hosseinzadeh, H., A new salt-resistant superabsorbent hydrogel based on kappa-carrageenan. E-Polymers, 2009: p. 13.
    16. Pourjavadi, A. and M. Kurdtabar, Collagen-based highly porous hydrogel without any porogen: Synthesis and characteristics. European Polymer Journal, 2007. 43(3): p. 877-889.
    17. Pourjavadi, A., R. Soleyman, and G.R. Barajee, Novel nanoporous superabsorbent hydrogel based on poly(acrylic acid) grafted onto salep: Synthesis and swelling behavior. Starch-Starke, 2008. 60(9): p. 467-475.
    18. Pourjavadi, A., G.R. Bardajee, and R. Soleyman, Synthesis and Swelling Behavior of a New Superabsorbent Hydrogel Network Based on Polyacrylamide Grafted onto Salep. Journal of Applied Polymer Science, 2009. 112(5): p. 2625-2633.
    19. Lee, S.B., et al., Temperature/pH-sensitive comb-type graft hydrogels composed of chitosan and poly(N-isopropylacrylamide). Journal of Applied Polymer Science, 2004. 92(4): p. 2612-2620.
    20. Hua, F. and M. Qian, Synthesis of self-crosslinking sodium polyacrylate hydrogel and water-absorbing mechanism. Journal of Materials Science, 2001. 36(3): p. 731-738.
    21. Marandi, G., et al., pH sensitivity and swelling behavior of partially hydrolyzed formaldehyde-crosslinked poly (acrylamide) superabsorbent hydrogels. Journal of Applied Polymer Science, 2008. 109(2): p. 1083-1092.
    22. Jin, S.P., et al., Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly(N-vinylpyrrolidone) and poly(acrylic acid). Polymer, 2006. 47(5): p. 1526-1532.
    23. Huang, H., et al., Fast Responsive and Strong Swelling Hydrogels Based on N-Isopropylacrylamide with Sodium Acrylate. Journal of Applied Polymer Science, 2009. 112(1): p. 123-128.
    24. Mohan, Y., et al., Swelling behavior of semi-interpenetrating polymer network hydrogels composed of poly (vinyl alcohol) and poly (acrylamide-co-sodium methacrylate). Journal of Applied Polymer Science, 2005. 98(1): p. 302-314.
    25. Zhang, J., et al., Preparation, swelling behaviors, and slow-release properties of a poly (acrylic acid-co-acrylamide)/sodium humate superabsorbent composite. Ind. Eng. Chem. Res, 2006. 45(1): p. 48-53.
    26. Li, A., J. Zhang, and A. Wang, Synthesis, characterization and water absorbency properties of poly (acrylic acid)/sodium humate superabsorbent composite. Polymers for Advanced Technologies, 2005. 16(9): p. 675-680.
    27. Wei, J., et al., Synthesis and characteristics of an amphoteric semi-IPN hydrogel composed of acrylic acid and poly(diallydimethylammonium chloride). Journal of Applied Polymer Science, 2007. 103(1): p. 345-350.
    28. Lee, W.F. and C.F. Chen, Poly(2-hydroxyethyl methacrylate-co-sulfobetaine) hydrogels. II. Synthesis and swelling behaviors of the [2-hydroxyethyl methacrylate-co-3-dimethyl(methacryloyloxyethyl)ammonium propane sulfonate] hydrogels. Journal of Applied Polymer Science, 1998. 69(10): p. 2021-2034.
    29. Lee, W.-F. and G.-H. Lin, Superabsorbent polymeric materials VIII: Swelling behavior of crosslinked poly[sodium acrylate-co-trimethyl methacryloyloxyethyl ammonium iodide] in aqueous salt solutions. Journal of Applied Polymer Science, 2001. 79(9): p. 1665-1674.
    30. Lee, W. and P. Yeh, Superabsorbent polymeric materials. IV. Swelling behavior of crosslinked poly [sodium acrylate-co-N, N-dimethyl (acrylamidopropyl) ammonium propane sulfonate] in aqueous salt solution. Journal of Applied Polymer Science, 1998. 66(3): p. 499-507.
    31. Zheng, Y., et al., Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly (sodium acrylate)/vermiculite superabsorbent composites. European Polymer Journal, 2007. 43(5): p. 1691-1698.
    32. Zhang, J.P., et al., Preparation, swelling behaviors and application of polyacrylamide/attapulgite superabsorbent composites. Polymers for Advanced Technologies, 2006. 17(1): p. 12-19.
    33. Li, A. and A. Wang, Synthesis and properties of clay-based superabsorbent composite. European Polymer Journal, 2005. 41(7): p. 1630-1637.
    34. Zheng, L., et al., Preparation and swelling behavior of amphoteric superabsorbent composite with semi-IPN composed of poly(acrylic acid)/Ca-bentonite/poly(dimethyldiallylammonium chloride). Polymers for Advanced Technologies, 2007. 18(3): p. 194-199.
    35. Yetimoglu, E., et al., N-vinylpyrrolidone/acrylic acid/2-acrylamido-2-methylpropane sulfonic acid based hydrogels: Synthesis, characterization and their application in the removal of heavy metals. Reactive and Functional Polymers, 2007. 67(5): p. 451-460.
    36. Liu, M., et al., Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization. Polymer International, 2007. 56(6): p. 729-737.
    37. Kabiri, K., S. Faraji-Dana, and M.J. Zohuriaan-Mehr, Novel sulfobetaine-sulfonic acid-contained superswelling hydrogels. Polymers for Advanced Technologies, 2005. 16(9): p. 659-666.
    38. Anzai, J., et al., Photocontrolled permeation of alkali cations through poly (vinyl chloride)/crown ether membrane. Die Makromolekulare Chemie, Rapid Communications, 1983. 4(11): p. 731-734.
    39. Haider, S., et al., Swelling and electroresponsive characteristics of gelatin immobilized onto multi-walled carbon nanotubes. Sensors and Actuators B: Chemical, 2007. 124(2): p. 517-528.
    40. Hisamitsu, I., et al., Glucose-responsive gel from phenylborate polymer and poly (vinyl alcohol): prompt response at physiological pH through the interaction of borate with amino group in the gel. Pharmaceutical Research, 1997. 14(3): p. 289-293.
    41. Gupta, P., K. Vermani, and S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today, 2002. 7(10): p. 569-579.
    42. 羅怡君, 李., 陳建中, 許明照,黃豪銘,施永勳,楊正昌, 牙科麻醉水膠敷料於拔牙傷口之活體評估. Chinese Journal of Dental Research, 2006. 25(2): p. 79-89.
    43. Chirila, T., An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials, 2001. 22(24): p. 3311-3317.
    44. Reddy, T.T. and A. Takahara, Simultaneous and sequential micro-porous semi-interpenetrating polymer network hydrogel films for drug delivery and wound dressing applications. Polymer, 2009. 50(15): p. 3537-3546.
    45. Nguyen, K. and J. West, Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002. 23(22): p. 4307-4314.
    46. Zhao, Y., et al., Superabsorbent hydrogels from poly (aspartic acid) with salt-, temperature-and pH-responsiveness properties. Polymer, 2005. 46(14): p. 5368-5376.
    47. Xu, S., et al., Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly (acrylic acid-co-diallyldimethylammonium chloride). Journal of Applied Polymer Science, 2006. 102(2): p. 986-991.
    48. 李文宏, 光纖量測技術於水泥質材料的熱膨脹系數與自體收縮之研究. 臺灣大學土木工程學研究所, 2004.
    49. Almusallam, A.A., Effect of environmental conditions on the properties of fresh and hardened concrete. Cement and Concrete Composites, 2001. 23(4-5): p. 353-361.
    50. Lura, P., O.M. Jensen, and K. van Breugel, Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cement and Concrete Research, 2003. 33(2): p. 223-232.
    51. Koenders, E.A.B. and K. van Breugel, Numerical modelling of autogenous shrinkage of hardening cement paste. Cement and Concrete Research, 1997. 27(10): p. 1489-1499.
    52. Henkensiefken, R., et al., Volume change and cracking in internally cured mixtures made with saturated lightweight aggregate under sealed and unsealed conditions. Cement and Concrete Composites, 2009. 31(7): p. 427-437.
    53. Weber, S. and H.W. Reinhardt, A New Generation of High Performance Concrete: Concrete with Autogenous Curing. Advanced Cement Based Materials, 1997. 6(2): p. 59-68.
    54. Kovler, K. and S. Zhutovsky, Overview and future trends of shrinkage research. Materials and Structures, 2006. 39(9): p. 827-847.
    55. Holt, E., Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages. Cement and Concrete Research, 2005. 35(3): p. 464-472.
    56. Jensen, O.M. and P. Lura, Techniques and materials for internal water curing of concrete. Materials and Structures, 2006. 39(9): p. 817-825.
    57. Rha, C., et al., Preparation and characterization of absorbent polymer-cement composites. Cement and Concrete Research, 1999. 29(2): p. 231-236.
    58. Jensen, O.M. and P.F. Hansen, Water-entrained cement-based materials I. Principles and theoretical background. Cement and Concrete Research, 2001. 31(4): p. 647-654.
    59. Bjontegaard, O., T. Hammer, and E. Sellevold. Cracking in high performance concrete before setting. 1998.
    60. Pourjavadi, A., A. Harzandi, and H. Hosseinzadeh, Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. European Polymer Journal, 2004. 40(7): p. 1363-1370.
    61. Mahdavinia, G., et al., Modified chitosan 4. Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties. European Polymer Journal, 2004. 40(7): p. 1399-1407.
    62. Goril, M., L. Barbara, and R. Figi, Influence of citric acid on the hydration of Portland cement. Cement and Concrete Research, 2009. 39(4): p. 275-282.
    63. 詹炳根, 丁., 超強吸水劑對混凝土早期內部相對濕度的影響. 合肥工業大學學報, 2006. 29(9): p. 1151-1155.
    64. 葉華 , 趙., 張宇, 吸水樹脂水泥基材料自養護外加劑的研究. 華南理工大學學報, 2003. 31(11): p. 41-44.
    65. Zhihong, W., H. Yucui, and H. Yuan, Research on increasing effect of solution polymerization for cement-based composite. Cement and Concrete Research, 2003. 33(10): p. 1655-1658.
    66. Knapen, E. and D. Van Gemert, Cement hydration and microstructure formation in the presence of water-soluble polymers. Cement and Concrete Research, 2009. 39(1): p. 6-13.
    67. Sha, W., E.A. O'Neill, and Z. Guo, Differential scanning calorimetry study of ordinary Portland cement. Cement and Concrete Research, 1999. 29(9): p. 1487-1489.

    無法下載圖示 本全文未授權公開
    QR CODE