簡易檢索 / 詳目顯示

研究生: 蔡維倫
Wei-Lun Chi
論文名稱: 有限元素分析應用於Ti-6Al-4V鈦合金電漿電弧銲接參數最佳化研究
A Optimal-Parameter Study of Finite Element Analysis Applied on Plasma Arc Welding for Ti-6Al-4V Titanium Alloy
指導教授: 鄭慶民
Cheng, Ching-Min
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 97
中文關鍵詞: 電漿電弧銲接有限元素分析
英文關鍵詞: Plasma arc welding, Finite element method
論文種類: 學術論文
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因近年來電腦性能越來越強大,使得有限元素分析軟體更為成熟,利用有限元素的方式進行銲接模擬可以大量的節省成本與時間。本論文利用有限元素軟體ANSYS,使用改良後之三維錐體移動熱源,對鈦合金板材Ti-6Al-4V進行銲接模擬分析,重現電漿電弧銲接過程,並探討體熱源之正確性與熱效率之大小。
    本論文的內容對於銲接材料進行溫度場分佈、角變形與應力應變的模擬分析,為觀察銲接溫度場的分佈狀況與分析銲接熱應力的作用行為,在銲接過程中以熱電耦來記錄銲接熱循環曲線,再使用田口方法找出最符合實驗的溫度參數。而最佳化結果顯示,改良後的三維錐體熱源使用熱效率60 %,用於模擬三維的銲接過程的溫度場分佈,可以更接近實際的銲道熱源輸入情況與溫度場分佈。
    在結構分析的部份,因銲道區的溫度梯度相當的高,熔池金屬處於熔融狀態,當熱源遠離之後,溫度急速的下降,產生不均勻的凝固收縮,使銲接區板材受到遠端材料的拘束,產生了殘留應力,而造成角變形。而對照模擬分析結果與實際量測數據,顯示出本研究之分析參數可準確模擬鈦合金薄板之電漿電弧銲接過程。

    In recent years, the computer performance is more and more powerful, so finite element analysis software is getting mature. Using numerical analysis method could save a lot of time and cost and has become a trend. This paper uses finite element analysis software ANSYS to analyze, use the modified three-dimensional conical heat source to Ti-6Al-4V titanium alloy on welding material and reappeared the plasma arc welding process, and probe into the exactness of the heat source model and thermal efficiency size.
    The welding simulation focuses on temperature field, thermal stress residual distribution and angular distortion, in order to observe welding distribution of temperature field and thermal stress, record the curve of thermal cycle in the welding process, and Application of the Taguchi method to find the optimal of the temperature parameter. The optimized results show that the modified three-dimensional conical heat source using thermal efficiency 60%, used to simulation the temperature filed distribution, can be close to the actual situation of the welding heat input and temperature filed distribution.
    For the structure analysis, molten pool of metal in the molten state that the welding zone are due to high temperature gradient. when the heat source away, rapid decline in temperature to produce uneven solidification shrinkage. Therefore, Sheet by welding zone to accept on constrained around metal, to produce the residual stress, which leads to angular distortion Compare experimental data with results from simulation, it shows that the finite element analysis of this study can accurately simulate the plasma arc welding process for butt joint of titanium alloy.

    摘要 I Abstract II 目錄 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3研究目的 3 第二章 文獻探討 4 2.1 Ti-6Al-4V之成份與特性 4 2.2鈦合金的熔接性與接合方法 5 2.3銲接變形 6 2.4角變形之形成 8 2.5熱輸入量對銲件角變形之影響 9 2.6束縛度對銲件角變形之影響 11 2.7銲接殘留應力 12 2.8電漿電弧銲接簡介與原理 14 2.9有限元素分析簡介 18 2.10 銲接溫度場的熱傳導分析理論 20 2.11 銲接過程之耦合分析 25 2.12非線性分析 26 2.12.1材料非線性 26 2.12.2狀態非線性 27 2.12.3幾何非線性 28 2.13有限元素應用於銲接研究發展文獻回顧 29 2.14有限元素法應用於PAW發展現況 34 2.15田口式實驗規劃 36 2.15.1因子的分類 37 2.15.2 L9(34)直交表 38 2.15.3 灰關聯分析 38 第三章 分析方法與實驗步驟 40 3.1有限元素模型 41 3.2熱量輸入條件 41 3.3分析假設條件設立 42 3.3.1有限元素之模型假設 43 3.3.2初始條件與邊界條件 43 3.3.3元素類型 44 3.4熱源模型的選擇 46 3.4.1沿銲件厚度方向的體熱源模式. 46 3.4.2 PAW的體熱源模型 47 3.5材料性質 49 3.6實驗方法 53 3.6.1電漿電弧銲接實驗設備 53 3.6.2銲接之溫度量測 53 第四章 實驗結果與討論 54 4.1銲接溫度場 54 4.1.1銲接熱源分佈 54 4.1.2縱向銲接熱循環 58 4.1.3橫向銲接熱循環 61 4.1.4銲接熱效率的選取 65 4.2應力分析 70 4.2.1暫態熱應力 70 4.2.2銲後殘留應力 71 4.2.3橫向應力分析 74 4.2.4縱向應力分析 76 4.3變形分析 79 4.3.1角變形 81 4.3.2 縱向變形 85 第五章 結論與建議 89 5.1結論 89 5.2建議 90 參考文獻 91

    [1] 園田弘文,“電漿電弧原理與電漿銲接之應用”,銲接與切割,pp.44-54 (1997).
    [2] BY E.Craig, "The Plasma Arc Process - A Review",
    Welding Journal, 67(2), pp19-25 (1988).
    [3] 蔡履文、陳鈞、鄭勝文,“穿孔模態電漿銲接”,銲接與切
    割,pp.1-9 (1993).
    [4] C. Leyens and M. Peters, “Titanium and Titanium alloys
    fundamental and applications”, WILEY-VCH Gmbh & Co.
    KGaA, pp.16 (2003).
    [5] 金重勳,“工程材料”,復文書局,(2003).
    [6] R. R. Boyer, “An overview on the use of titanium in
    aerospace industry”, Materials Science and Engineering
    A213, pp.103-114 (1996).
    [7] William F. Smith, “Structure and Properties of
    Engineering Alloys”, McGraw-Hill Inc., p.433-486
    (1993).
    [8] 羅騰玉、吳韻聲,“鈦及鈦合金銲接”,銲接與切割,pp.28-38 (2001).
    [9] M. J. Donachie, JR, “Titanium and Titanium Alloy”,
    Source Book, pp.3-9.
    [10] 高道鋼,“鈦銲接技術”,全華科技圖書,(2001).
    [11] M. Roggensack, et al., “Studies on Laser-welded and
    Plasma-welded titanium”, Dent Mater, pp.104-107 (1993).
    [12] V. J. Papazoglou and K. Masubuchi, “Weld. J.
    (Suppl.)”, 57(9), pp.251-262 (1978).
    [13] 蔡宗亮,“銲接應力與變形”,銲接工程技術研習會論文集,(1985).
    [14] 曾光宏,“電漿銲電弧之原理與應用”,銲接與切割,9(1),pp.46-55 (1997).
    [15] T. L. Teng and C. C. Lin, Int. J. Pres. Ves & Piping,
    75, pp.857-864 (1998).
    [16] M. Watanabe and K. Satoh, Weld. J. (Suppl.), 40(8),
    pp.377-384 (1961).
    [17] “Welding Handbook”, American Welding Society 8th
    edn, Vol 1, (1978).
    [18] R. H. Leggatt, et al., “Residual Stresses in Welded
    Construction and Their Effects”, The Welding
    Institute, pp.119-132 (1977).
    [19] C. P. Chou and Y. C. Lin, Mater. Sci. Technol.,
    (2),pp.179-183 (1992).
    [20] Y. C. Lin and C. P. Chou, Mater. Sci. Technol., 8(9),
    pp.837-840 (1992).
    [21] Y. C. Lin and C. P. Chou, J. Mater. Process. Technol.,
    48, pp.693-698 (1995).
    [22] K. H. Tseng and C. P. Chou, Analysis and Experiment of
    the Temperatures and Stresses in a Single-Pass Butt-
    Welded Plate, Submitted to Science and Technology of
    Welding and Joining, (2001).
    [23] E. Macherauch, et al., “Residual Stresses in Welded
    Construction and Their Effects”, The Welding
    Institute, pp.267-282 (1977).
    [24] 賴耿陽,“電漿工學的基礎”,復文書局,pp.1-8 (2002).
    [25] 周長彬、蔡丕椿、郭央諶,“銲接學”,全華科技圖書,pp.63-67 (1988).
    [26] 曾光宏,“電漿銲電弧之原理與應用”,銲接與切割,9(1),pp.46-55 (1997).
    [27] E. Craig, “The plasma arc process-a review”, Welding
    Journal, 67(2), pp.19-25 (1988).
    [28] Z. Sun., “Fusion zone microstructures of laser and
    plasma welded dissimilar steel joints”, Material and
    manufacturing processes, 14(1), pp.37-52 (1999).
    [29] 蔡履文、陳鈞、鄭勝文,“穿孔模態電漿銲接”,3(3),pp.1-9 (1993).
    [27] M.J. Turner, R.W. Clough, H.C. Martin, and L.J.
    Topp, “Stiffness and Deflection Analysis of Complex
    Structures”, Journal Aeronautical Science, 23, pp.805-
    824 (1956).
    [28] R.J. Melosh, “Basis for Derivation of Matrices for
    the Direct Stiffness Method”, Journal American
    Institute for Aeronautics and Astronautics, 1, pp.31-
    37 (1965).
    [29] B.A. Szabo, and G.C. Lee, “Derivation of Stiffness
    Matrices for Problems in Plane Elasticity by
    Galerkin’s Method”, International Journal of
    Numerical Methods in Engineering, 1, pp.301-310 (1969).
    [30] O.C. Zienkiewicz, “Finite Element Method in
    Engineering Science”, McGraw-Hill, pp.521 (1971).
    [31] Saeed, Moaveni., “Finite Element Analysis-Theory And
    Application with ANSYS”
    [32] 李輝煌,“Engineering Analysis with ANSYS:Fundamentals and Concepts”,高立圖書有限公司,(2009).
    [33] J.Dowden, M.Davis and P. Kapadia, “Some aspect of the
    fluid dynamics of laser welding”, Journal of fluid
    mechanics, 126, pp.123-146 (1983).
    [34] Swift-hook D.T, Gick AEF, “Penetration welding with
    lasers”, welding Journal, 52, pp.492-499 (1973).
    [35] Shim Y, Feng Z, Lee S, Kim D, Jaeger
    J, “Determination of residual stresses in thick
    section weldments”, Welding Journal, 71(9), pp.305-
    312 (1992).
    [36] Paley, Z, Hibbert P.D, “Computation of temperature in
    actual weld design”, Welding Journal, 54(11), pp.385-
    392 (1975).
    [37] L.Karlsson, M.Jonsson, L.E. Lindgren et
    al., “Residual stresses and deformations in a welded
    thin-walled pipe”, Pressure Vessels and Piping
    Division, 173(7), pp.23-37 (1989).
    [38] J.M.J. McDill, A.S. Oddy and R.C. Reed, “Predicting
    residual stress and distortion when welding aeroengine
    alloys”, Canadian Aeronauticsand Space Journal, 44
    (2), pp.68-72 (1998).
    [39] Chande T, Mazumder J, “Estimating effect of
    processing conditions and variable properties upon
    pool shape , cooling rates and absorption coefficient
    in laser welding”, J.Appl. Phys, 56(7), pp.1981-1986
    (1984).
    [40] Mazumber J, Steen W.M, “Heat transfer model for cw
    laser material process”, J.Appl.Phys, 51(2), pp.941-
    947 (1980).
    [41] Steen W.M, Dowden J, Davis M and Kapadia P, “A point
    and line source model of laser keyhole welding”,
    J.appl.phys, 21, pp1255-1260 (1988).
    [42] Akhter R, Davis M, Dowden J, Kapadia P, Ley M and
    steen W.M, “A method for calculating the fused zone
    profile of laser keyhole welds”, J.Phys. D: Appl.
    Phys 21, pp.23-28 (1989).
    [43] T. INOUE and D.Y. JU, “Thermo-mechanical Simulation
    of Some Types of Steady Continuous Casting
    Processes”, Advances in Continuum Mechanics,
    O.Bruller, V.Mannl, J.Najar, (eds.), Spinger-Verlag,
    pp.389-406 (1991).
    [44] 魏豔紅,劉仁培,董祖玨,“不銹鋼銲接凝固裂紋應力應變場數值模擬結果分析[J] ”,銲接學報,21(6),pp.36-38 (2000).
    [45] 劉仁培,董祖玨,魏豔紅,“不銹鋼銲接凝固裂紋應力應變場數值模擬模型的建立[J] ”,銲接學報,20(4),pp.238-243 (1999).
    [46] Wang Jian-hua, et al., “An FEM model of buckling
    distortion during welding of thin plate”, J. of
    Shanghai Jiaotong University, 4(2), pp. 69-72 (1999).
    [47] Lambrakos S.G, Metzbower E.A, Moore P.G, Dunn J.H, “A
    numerical model for deep penetration laser welding
    process”, ICALEO, pp.40-52 (1991).
    [48] Yang Y.S, Hsu C.R, “Heat flow in laser die blank
    welding, Journal of laser Applications”, 15(1), pp.17-
    24 (1993).
    [49] Voelkel D.D, Mazumder J, “Visualization and
    Dimensional Measurement of the laser Weld pool”,
    Welding Journal, Feb, (1989).
    [50] L. Yu-cheng, et al., “Simulation on temperature field
    of TIG welding of copper without preheating”,
    Transactions of Nonferrous Metals Society of China, 16
    (44), pp.838-842 (2006).
    [51] 陳楚等,“軸對稱熱彈塑性應力有限元分析在銲接中的應用”,銲接學報,8(4),pp.196-203 (1987).
    [52] 汪建華等,“管板接頭三維銲接變形的數值模擬”,銲接學報,1(3), pp.140-145 (1995).
    [53] 汪建華等,“壓縮機銲接變形的三維數值類比”,機械工程學報,32(1),.pp.85-91 (1996).
    [54] S.W. Wen, et al., “Finite Element Modelling of a
    Submerged Arc Welding Process”, Journal of Materials
    Processing Technology, 119(1-3), pp.203-209 (2001).
    [55] Gareth A. Taylar, Michael Hughes, Nadia Strusevich et
    al., “Finite Volume Methods Applied to the
    Computational Modelling of Welding Phenomena”,
    Applied Mathematical Modeling, 26(2),pp.309-320 (2002).
    [56] Fenggui Lu. Shun Yao, Songnian Lou and Yongbing
    Li, “Modeling and finite element analysis on GTAW arc
    and weld pool”, Computational Materials Science, 29,
    pp.371-378 (2004).
    [57] X.D. He, J.X. Zhang, S.L .Gong, Y.R. Feng, “Finite
    element analysis of laser welding residual stress and
    distortion in welded joints of TC4 titanium alloy”,
    Material Science and Engineerin, Vol.8, pp.39-43
    (2005).
    [58] Z.B. Dong, Y.H Wel, “Three dimensional modeling weld
    solidification cracks in multipass welding”,
    Theoretical and Applied Fracture Mechanics , 46,
    pp.156-165 (2006).
    [59] GuoMing Han, Jian Zhao and jianQang Li, “Dynamic
    simulation of the temperature field of stainless laser
    welding”, Materials and Design, 28, pp.240-245 (2007).
    [60] Jamshid Sabbaghzadeh, Maryam Azizi and M. Javad
    Torkamany, “Numerical and experimental investigation
    of seam welding with a pulsed laser”, Optics and
    Laser Technology, 40, pp.289-296 (2008).
    [61] Casalino G, Ghorbel E, “Numerical model of CO2 laser
    welding of thermoplastic polymers”, Journal of
    materials processing technology, 207, pp.63-71 (2008).
    [62] Hsu Y.F, Rubinsky B, “Two dimensional heat transfer
    study on the key hole plasma arc welding process”,
    Heat Mass Transfer, 31(7), pp.1409-1421 (2008).
    [63] Keanini R.G, Rubinsky B, “Three dimensional
    simulation of the plasma arc welding process”, Heat
    Mass Transfer, 36(13), pp.3283-3298 (1993).
    [64] Fan H.G, Kovacevic R, “Key hole formation and
    collapse in plasma arc welding”, J. Phys 32(22),
    pp.2902-2909 (1999).
    [65] C.S. Wu, et al., “An adaptive heat source model for
    finite-element analysis of keyhole plasma arc
    welding”, Computational Materials Science, 46, pp.167-
    172 (2009).
    [66] H.X. Wang, et al., “Numerical calculation of variable
    polarity keyhole plasma arc welding process for
    aluminum alloys based on finite difference method”,
    Computational Materials Science, 40, pp.213-225 (2007).
    [67] 武傳松,“銲接熱過程與熔池形態”,機械工業出版社,pp.267-212 (2008).
    [68] 姚君山、王國慶、劉欣等,“鈦合金T型接頭雷射深熔銲溫度場數值模擬”,航天製造技術,2,pp.12-15 (2004).
    [69] 任維佳、吳愛萍、趙海燕等,“大型電機轉子銲接殘留應力的數值分析”,銲接學報,23(2),pp.92-96 (2002).
    [70] “Aeronautical materials handbook editorial
    community”, Aeronautical materials handbook,
    Beijing, pp.104-132 (2002).
    [71] J. R. Phillip, “Techniques For Quality Engineering”,
    McGraw-Hill, pp.18-33 (1989).
    [72] 張偉哲、溫坤禮、張廷政,“灰關聯模型方法與應用”, 高立圖書有限公司,pp.13-26 (2006).

    無法下載圖示 本全文未授權公開
    QR CODE