研究生: |
蔡維倫 Wei-Lun Chi |
---|---|
論文名稱: |
有限元素分析應用於Ti-6Al-4V鈦合金電漿電弧銲接參數最佳化研究 A Optimal-Parameter Study of Finite Element Analysis Applied on Plasma Arc Welding for Ti-6Al-4V Titanium Alloy |
指導教授: |
鄭慶民
Cheng, Ching-Min |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 電漿電弧銲接 、有限元素分析 |
英文關鍵詞: | Plasma arc welding, Finite element method |
論文種類: | 學術論文 |
相關次數: | 點閱:271 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因近年來電腦性能越來越強大,使得有限元素分析軟體更為成熟,利用有限元素的方式進行銲接模擬可以大量的節省成本與時間。本論文利用有限元素軟體ANSYS,使用改良後之三維錐體移動熱源,對鈦合金板材Ti-6Al-4V進行銲接模擬分析,重現電漿電弧銲接過程,並探討體熱源之正確性與熱效率之大小。
本論文的內容對於銲接材料進行溫度場分佈、角變形與應力應變的模擬分析,為觀察銲接溫度場的分佈狀況與分析銲接熱應力的作用行為,在銲接過程中以熱電耦來記錄銲接熱循環曲線,再使用田口方法找出最符合實驗的溫度參數。而最佳化結果顯示,改良後的三維錐體熱源使用熱效率60 %,用於模擬三維的銲接過程的溫度場分佈,可以更接近實際的銲道熱源輸入情況與溫度場分佈。
在結構分析的部份,因銲道區的溫度梯度相當的高,熔池金屬處於熔融狀態,當熱源遠離之後,溫度急速的下降,產生不均勻的凝固收縮,使銲接區板材受到遠端材料的拘束,產生了殘留應力,而造成角變形。而對照模擬分析結果與實際量測數據,顯示出本研究之分析參數可準確模擬鈦合金薄板之電漿電弧銲接過程。
In recent years, the computer performance is more and more powerful, so finite element analysis software is getting mature. Using numerical analysis method could save a lot of time and cost and has become a trend. This paper uses finite element analysis software ANSYS to analyze, use the modified three-dimensional conical heat source to Ti-6Al-4V titanium alloy on welding material and reappeared the plasma arc welding process, and probe into the exactness of the heat source model and thermal efficiency size.
The welding simulation focuses on temperature field, thermal stress residual distribution and angular distortion, in order to observe welding distribution of temperature field and thermal stress, record the curve of thermal cycle in the welding process, and Application of the Taguchi method to find the optimal of the temperature parameter. The optimized results show that the modified three-dimensional conical heat source using thermal efficiency 60%, used to simulation the temperature filed distribution, can be close to the actual situation of the welding heat input and temperature filed distribution.
For the structure analysis, molten pool of metal in the molten state that the welding zone are due to high temperature gradient. when the heat source away, rapid decline in temperature to produce uneven solidification shrinkage. Therefore, Sheet by welding zone to accept on constrained around metal, to produce the residual stress, which leads to angular distortion Compare experimental data with results from simulation, it shows that the finite element analysis of this study can accurately simulate the plasma arc welding process for butt joint of titanium alloy.
[1] 園田弘文,“電漿電弧原理與電漿銲接之應用”,銲接與切割,pp.44-54 (1997).
[2] BY E.Craig, "The Plasma Arc Process - A Review",
Welding Journal, 67(2), pp19-25 (1988).
[3] 蔡履文、陳鈞、鄭勝文,“穿孔模態電漿銲接”,銲接與切
割,pp.1-9 (1993).
[4] C. Leyens and M. Peters, “Titanium and Titanium alloys
fundamental and applications”, WILEY-VCH Gmbh & Co.
KGaA, pp.16 (2003).
[5] 金重勳,“工程材料”,復文書局,(2003).
[6] R. R. Boyer, “An overview on the use of titanium in
aerospace industry”, Materials Science and Engineering
A213, pp.103-114 (1996).
[7] William F. Smith, “Structure and Properties of
Engineering Alloys”, McGraw-Hill Inc., p.433-486
(1993).
[8] 羅騰玉、吳韻聲,“鈦及鈦合金銲接”,銲接與切割,pp.28-38 (2001).
[9] M. J. Donachie, JR, “Titanium and Titanium Alloy”,
Source Book, pp.3-9.
[10] 高道鋼,“鈦銲接技術”,全華科技圖書,(2001).
[11] M. Roggensack, et al., “Studies on Laser-welded and
Plasma-welded titanium”, Dent Mater, pp.104-107 (1993).
[12] V. J. Papazoglou and K. Masubuchi, “Weld. J.
(Suppl.)”, 57(9), pp.251-262 (1978).
[13] 蔡宗亮,“銲接應力與變形”,銲接工程技術研習會論文集,(1985).
[14] 曾光宏,“電漿銲電弧之原理與應用”,銲接與切割,9(1),pp.46-55 (1997).
[15] T. L. Teng and C. C. Lin, Int. J. Pres. Ves & Piping,
75, pp.857-864 (1998).
[16] M. Watanabe and K. Satoh, Weld. J. (Suppl.), 40(8),
pp.377-384 (1961).
[17] “Welding Handbook”, American Welding Society 8th
edn, Vol 1, (1978).
[18] R. H. Leggatt, et al., “Residual Stresses in Welded
Construction and Their Effects”, The Welding
Institute, pp.119-132 (1977).
[19] C. P. Chou and Y. C. Lin, Mater. Sci. Technol.,
(2),pp.179-183 (1992).
[20] Y. C. Lin and C. P. Chou, Mater. Sci. Technol., 8(9),
pp.837-840 (1992).
[21] Y. C. Lin and C. P. Chou, J. Mater. Process. Technol.,
48, pp.693-698 (1995).
[22] K. H. Tseng and C. P. Chou, Analysis and Experiment of
the Temperatures and Stresses in a Single-Pass Butt-
Welded Plate, Submitted to Science and Technology of
Welding and Joining, (2001).
[23] E. Macherauch, et al., “Residual Stresses in Welded
Construction and Their Effects”, The Welding
Institute, pp.267-282 (1977).
[24] 賴耿陽,“電漿工學的基礎”,復文書局,pp.1-8 (2002).
[25] 周長彬、蔡丕椿、郭央諶,“銲接學”,全華科技圖書,pp.63-67 (1988).
[26] 曾光宏,“電漿銲電弧之原理與應用”,銲接與切割,9(1),pp.46-55 (1997).
[27] E. Craig, “The plasma arc process-a review”, Welding
Journal, 67(2), pp.19-25 (1988).
[28] Z. Sun., “Fusion zone microstructures of laser and
plasma welded dissimilar steel joints”, Material and
manufacturing processes, 14(1), pp.37-52 (1999).
[29] 蔡履文、陳鈞、鄭勝文,“穿孔模態電漿銲接”,3(3),pp.1-9 (1993).
[27] M.J. Turner, R.W. Clough, H.C. Martin, and L.J.
Topp, “Stiffness and Deflection Analysis of Complex
Structures”, Journal Aeronautical Science, 23, pp.805-
824 (1956).
[28] R.J. Melosh, “Basis for Derivation of Matrices for
the Direct Stiffness Method”, Journal American
Institute for Aeronautics and Astronautics, 1, pp.31-
37 (1965).
[29] B.A. Szabo, and G.C. Lee, “Derivation of Stiffness
Matrices for Problems in Plane Elasticity by
Galerkin’s Method”, International Journal of
Numerical Methods in Engineering, 1, pp.301-310 (1969).
[30] O.C. Zienkiewicz, “Finite Element Method in
Engineering Science”, McGraw-Hill, pp.521 (1971).
[31] Saeed, Moaveni., “Finite Element Analysis-Theory And
Application with ANSYS”
[32] 李輝煌,“Engineering Analysis with ANSYS:Fundamentals and Concepts”,高立圖書有限公司,(2009).
[33] J.Dowden, M.Davis and P. Kapadia, “Some aspect of the
fluid dynamics of laser welding”, Journal of fluid
mechanics, 126, pp.123-146 (1983).
[34] Swift-hook D.T, Gick AEF, “Penetration welding with
lasers”, welding Journal, 52, pp.492-499 (1973).
[35] Shim Y, Feng Z, Lee S, Kim D, Jaeger
J, “Determination of residual stresses in thick
section weldments”, Welding Journal, 71(9), pp.305-
312 (1992).
[36] Paley, Z, Hibbert P.D, “Computation of temperature in
actual weld design”, Welding Journal, 54(11), pp.385-
392 (1975).
[37] L.Karlsson, M.Jonsson, L.E. Lindgren et
al., “Residual stresses and deformations in a welded
thin-walled pipe”, Pressure Vessels and Piping
Division, 173(7), pp.23-37 (1989).
[38] J.M.J. McDill, A.S. Oddy and R.C. Reed, “Predicting
residual stress and distortion when welding aeroengine
alloys”, Canadian Aeronauticsand Space Journal, 44
(2), pp.68-72 (1998).
[39] Chande T, Mazumder J, “Estimating effect of
processing conditions and variable properties upon
pool shape , cooling rates and absorption coefficient
in laser welding”, J.Appl. Phys, 56(7), pp.1981-1986
(1984).
[40] Mazumber J, Steen W.M, “Heat transfer model for cw
laser material process”, J.Appl.Phys, 51(2), pp.941-
947 (1980).
[41] Steen W.M, Dowden J, Davis M and Kapadia P, “A point
and line source model of laser keyhole welding”,
J.appl.phys, 21, pp1255-1260 (1988).
[42] Akhter R, Davis M, Dowden J, Kapadia P, Ley M and
steen W.M, “A method for calculating the fused zone
profile of laser keyhole welds”, J.Phys. D: Appl.
Phys 21, pp.23-28 (1989).
[43] T. INOUE and D.Y. JU, “Thermo-mechanical Simulation
of Some Types of Steady Continuous Casting
Processes”, Advances in Continuum Mechanics,
O.Bruller, V.Mannl, J.Najar, (eds.), Spinger-Verlag,
pp.389-406 (1991).
[44] 魏豔紅,劉仁培,董祖玨,“不銹鋼銲接凝固裂紋應力應變場數值模擬結果分析[J] ”,銲接學報,21(6),pp.36-38 (2000).
[45] 劉仁培,董祖玨,魏豔紅,“不銹鋼銲接凝固裂紋應力應變場數值模擬模型的建立[J] ”,銲接學報,20(4),pp.238-243 (1999).
[46] Wang Jian-hua, et al., “An FEM model of buckling
distortion during welding of thin plate”, J. of
Shanghai Jiaotong University, 4(2), pp. 69-72 (1999).
[47] Lambrakos S.G, Metzbower E.A, Moore P.G, Dunn J.H, “A
numerical model for deep penetration laser welding
process”, ICALEO, pp.40-52 (1991).
[48] Yang Y.S, Hsu C.R, “Heat flow in laser die blank
welding, Journal of laser Applications”, 15(1), pp.17-
24 (1993).
[49] Voelkel D.D, Mazumder J, “Visualization and
Dimensional Measurement of the laser Weld pool”,
Welding Journal, Feb, (1989).
[50] L. Yu-cheng, et al., “Simulation on temperature field
of TIG welding of copper without preheating”,
Transactions of Nonferrous Metals Society of China, 16
(44), pp.838-842 (2006).
[51] 陳楚等,“軸對稱熱彈塑性應力有限元分析在銲接中的應用”,銲接學報,8(4),pp.196-203 (1987).
[52] 汪建華等,“管板接頭三維銲接變形的數值模擬”,銲接學報,1(3), pp.140-145 (1995).
[53] 汪建華等,“壓縮機銲接變形的三維數值類比”,機械工程學報,32(1),.pp.85-91 (1996).
[54] S.W. Wen, et al., “Finite Element Modelling of a
Submerged Arc Welding Process”, Journal of Materials
Processing Technology, 119(1-3), pp.203-209 (2001).
[55] Gareth A. Taylar, Michael Hughes, Nadia Strusevich et
al., “Finite Volume Methods Applied to the
Computational Modelling of Welding Phenomena”,
Applied Mathematical Modeling, 26(2),pp.309-320 (2002).
[56] Fenggui Lu. Shun Yao, Songnian Lou and Yongbing
Li, “Modeling and finite element analysis on GTAW arc
and weld pool”, Computational Materials Science, 29,
pp.371-378 (2004).
[57] X.D. He, J.X. Zhang, S.L .Gong, Y.R. Feng, “Finite
element analysis of laser welding residual stress and
distortion in welded joints of TC4 titanium alloy”,
Material Science and Engineerin, Vol.8, pp.39-43
(2005).
[58] Z.B. Dong, Y.H Wel, “Three dimensional modeling weld
solidification cracks in multipass welding”,
Theoretical and Applied Fracture Mechanics , 46,
pp.156-165 (2006).
[59] GuoMing Han, Jian Zhao and jianQang Li, “Dynamic
simulation of the temperature field of stainless laser
welding”, Materials and Design, 28, pp.240-245 (2007).
[60] Jamshid Sabbaghzadeh, Maryam Azizi and M. Javad
Torkamany, “Numerical and experimental investigation
of seam welding with a pulsed laser”, Optics and
Laser Technology, 40, pp.289-296 (2008).
[61] Casalino G, Ghorbel E, “Numerical model of CO2 laser
welding of thermoplastic polymers”, Journal of
materials processing technology, 207, pp.63-71 (2008).
[62] Hsu Y.F, Rubinsky B, “Two dimensional heat transfer
study on the key hole plasma arc welding process”,
Heat Mass Transfer, 31(7), pp.1409-1421 (2008).
[63] Keanini R.G, Rubinsky B, “Three dimensional
simulation of the plasma arc welding process”, Heat
Mass Transfer, 36(13), pp.3283-3298 (1993).
[64] Fan H.G, Kovacevic R, “Key hole formation and
collapse in plasma arc welding”, J. Phys 32(22),
pp.2902-2909 (1999).
[65] C.S. Wu, et al., “An adaptive heat source model for
finite-element analysis of keyhole plasma arc
welding”, Computational Materials Science, 46, pp.167-
172 (2009).
[66] H.X. Wang, et al., “Numerical calculation of variable
polarity keyhole plasma arc welding process for
aluminum alloys based on finite difference method”,
Computational Materials Science, 40, pp.213-225 (2007).
[67] 武傳松,“銲接熱過程與熔池形態”,機械工業出版社,pp.267-212 (2008).
[68] 姚君山、王國慶、劉欣等,“鈦合金T型接頭雷射深熔銲溫度場數值模擬”,航天製造技術,2,pp.12-15 (2004).
[69] 任維佳、吳愛萍、趙海燕等,“大型電機轉子銲接殘留應力的數值分析”,銲接學報,23(2),pp.92-96 (2002).
[70] “Aeronautical materials handbook editorial
community”, Aeronautical materials handbook,
Beijing, pp.104-132 (2002).
[71] J. R. Phillip, “Techniques For Quality Engineering”,
McGraw-Hill, pp.18-33 (1989).
[72] 張偉哲、溫坤禮、張廷政,“灰關聯模型方法與應用”, 高立圖書有限公司,pp.13-26 (2006).