研究生: |
李尉賑 Lee, Wei-Chen |
---|---|
論文名稱: |
二維中孔硒化鎘半導體材料合成、結構解析與應用 Syntheses, Characterizations and Applications of Mesoporous 2D CdSe Quantum Structures |
指導教授: |
劉沂欣
Liu, Yi-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 硒化鎘 、二維材料 、有機-無機混合材料 、催化 、半導體 、二維半導體 |
英文關鍵詞: | Organic-Inorganic Hybrid Materials, space group, 2D semiconductor |
DOI URL: | http://doi.org/10.6345/NTNU202001382 |
論文種類: | 學術論文 |
相關次數: | 點閱:270 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc., 1993, 115, 8706-8715.
2. Murray, C. B.; Kagan, C. R.; Bawendi, M. G., Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices, Science, 1995, 270, 1335.
3. Chartier, P.; Nguyen Cong, H.; Sene, C., Hybrid organic–inorganic photovoltaı̈c junctions:: case of the all thin-film CdSe/poly(3-methylthiophene) junction, Sol. Energy Mater. Sol. Cells, 1998, 52, 413-421.
4. Huang, X.; Li, J.; Zhang, Y.; Mascarenhas, A., From 1D Chain to 3D Network: Tuning Hybrid II-VI Nanostructures and Their Optical Properties, J. Am. Chem. Soc., 2003, 125, 7049-7055.
5. Liu, Y.; Qiu, H. Y.; Xu, Y.; Wu, D.; Li, M. J.; Jiang, J. X.; Lai, G. Q. Selective synthesis of wurtzite CdSe nanorods and zinc blend CdSe nanocrystals through a convenient solvothermal route, J. Nanoparticle Res., 2007, 9, 745-752.
6. 徐晟智(2017)。二維結構稀磁性硒化鎘奈米片之合成、鑑定與應用。台北:國立臺灣師範大學。
7. Han, Z.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D., Robust Photogeneration of H2 in Water Using Semiconductor Nanocrystals and a Nickel Catalyst, Science, 2012, 338, 1321.
8. Chepape, K. F.; Mofokeng, T. P.; Nyamukamba, P.; Mubiayi, K. P.; Moloto, M. J., Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles, J. Nanotechnol., 2017, 2017, 5340784.
9. Mir, S. H.; Nagahara, L. A.; Thundat, T.; Mokarian-Tabari, P.; Furukawa, H.; Khosla, A., Review—Organic-Inorganic Hybrid Functional Materials: An Integrated Platform for Applied Technologies, J. Electrochem. Soc., 2018, 165, B3137-B3156.
10. Voiry, D.; Shin, H. S.; Loh, K. P.; Chhowalla, M., Low-dimensional catalysts for hydrogen evolution and CO2 reduction, Nat. Rev. Chem., 2018, 2, 0105.
11. Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X., Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol., 2016, 11, 218-230.
12. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U.S.A, 2005, 102, 10451.
13. Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B., Two-Dimensional Colloidal Nanocrystals, Chem. Rev., 2016, 116, 10934-10982.
14. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A., 2D transition metal dichalcogenides, Nature Reviews Materials, 2017, 2, 17033.
15. Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M., A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 2009, 8, 76-80.
16. Yu, J.; Chen, R., Optical properties and applications of two-dimensional CdSe nanoplatelets, InfoMat, 2020, 2, 905-927
17. Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L., Colloidal nanoplatelets with two-dimensional electronic structure, Nat. Mater., 2011, 10, 936-941.
18. Delikanli, S.; Yu, G.; Yeltik, A.; Bose, S.; Erdem, T.; Yu, J.; Erdem, O.; Sharma, M.; Sharma, V. K.; Quliyeva, U.; Shendre, S.; Dang, C.; Zhang, D. H.; Sum, T. C.; Fan, W.; Demir, H. V., Ultrathin Highly Luminescent Two-Monolayer Colloidal CdSe Nanoplatelets, Adv. Funct. Mater., 2019, 29, 1901028.
19. Sharma, M.; Gungor, K.; Yeltik, A.; Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Erdem, T.; Delikanli, S.; McBride, J. R.; Demir, H. V., Near-Unity Emitting Copper-Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators, Adv. Mater., 2017, 29, 1700821.
20. Sharma, M.; Olutas, M.; Yeltik, A.; Kelestemur, Y.; Sharma, A.; Delikanli, S.; Guzelturk, B.; Gungor, K.; McBride, J. R.; Demir, H. V., Understanding the Journey of Dopant Copper Ions in Atomically Flat Colloidal Nanocrystals of CdSe Nanoplatelets Using Partial Cation Exchange Reactions, Chem. Mater., 2018, 30, 3265-3275.
21. Khan, A. H.; Pinchetti, V.; Tanghe, I.; Dang, Z.; Martín-García, B.; Hens, Z.; Van Thourhout, D.; Geiregat, P.; Brovelli, S.; Moreels, I., Tunable and Efficient Red to Near-Infrared Photoluminescence by Synergistic Exploitation of Core and Surface Silver Doping of CdSe Nanoplatelets, Chem. Mater., 2019, 31, 1450-1459.
22. Dufour, M.; Izquierdo, E.; Livache, C.; Martinez, B.; Silly, M. G.; Pons, T.; Lhuillier, E.; Delerue, C.; Ithurria, S., Doping as a Strategy to Tune Color of 2D Colloidal Nanoplatelets, ACS Appl. Mater. Interfaces, 2019, 11, 10128-10134.
23. Beaulac, R.; Archer, P. I.; van Rijssel, J.; Meijerink, A.; Gamelin, D. R., Exciton Storage by Mn2+ in Colloidal Mn2+-Doped CdSe Quantum Dots, Nano Lett., 2008, 8, 2949-2953.
24. Giovanella, U.; Pasini, M.; Lorenzon, M.; Galeotti, F.; Lucchi, C.; Meinardi, F.; Luzzati, S.; Dubertret, B.; Brovelli, S., Efficient Solution-Processed Nanoplatelet-Based Light-Emitting Diodes with High Operational Stability in Air, Nano Lett., 2018, 18, 3441-3448.
25. Zhang, F.; Wang, S.; Wang, L.; Lin, Q.; Shen, H.; Cao, W.; Yang, C.; Wang, H.; Yu, L.; Du, Z.; Xue, J.; Li, L. S., Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets, Nanoscale, 2016, 8, 12182-12188.
26. Chauhan, H.; Kumar, Y.; Dana, J.; Satpati, B.; Ghosh, H. N.; Deka, S., Photoinduced ultrafast charge separation in colloidal 2-dimensional CdSe/CdS-Au hybrid nanoplatelets and corresponding application in photocatalysis, Nanoscale, 2016, 8, 15802-15812.
27. Sigle, D. O.; Zhang, L.; Ithurria, S.; Dubertret, B.; Baumberg, J. J., Ultrathin CdSe in Plasmonic Nanogaps for Enhanced Photocatalytic Water Splitting, J. Phys. Chem. Lett., 2015, 6, 1099-1103.
28. Naskar, S.; Schlosser, A.; Miethe, J. F.; Steinbach, F.; Feldhoff, A.; Bigall, N. C., Site-Selective Noble Metal Growth on CdSe Nanoplatelets, Chem. Mater., 2015, 27, 3159-3166.
29. Klein, N.; Senkovska, I.; Gedrich, K.; Stoeck, U.; Henschel, A.; Mueller, U.; Kaskel, S., A Mesoporous Metal–Organic Framework, Angew. Chem. Int. Ed., 2009, 48, 9954-9957.
30. Song, L.; Zhang, J.; Sun, L.; Xu, F.; Li, F.; Zhang, H.; Si, X.; Jiao, C.; Li, Z.; Liu, S.; Liu, Y.; Zhou, H.; Sun, D.; Du, Y.; Cao, Z.; Gabelica, Z., Mesoporous metal–organic frameworks: design and applications, Energy Environ. Sci, 2012, 5, 7508-7520.
31. Górka, J.; Fulvio, P. F.; Pikus, S.; Jaroniec, M., Mesoporous metal organic framework–boehmite and silica composites, Chem. Commun., 2010, 46, 6798-6800.
32. Dogutan, D. K.; Nocera, D. G., Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis, Acc. Chem. Res., 2019, 52, 3143-3148.
33. Liu, C.; Sakimoto, K. K.; Colón, B. C.; Silver, P. A.; Nocera, D. G., Ambient nitrogen reduction cycle using a hybrid inorganic–biological system, PNAS, 2017, 201706371.
34. Huynh, M.; Shi, C.; Billinge, S. J. L.; Nocera, D. G., Nature of Activated Manganese Oxide for Oxygen Evolution, J. Am. Chem. Soc., 2015, 137, 14887-14904.
35. Bediako, D. K.; Surendranath, Y.; Nocera, D. G., Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Thin Film Electrocatalyst, J. Am. Chem. Soc., 2013, 135, 3662-3674.
36. Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G., Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis, Science, 2016, 352, 1210.
37. Kim, T. J.; Jung, Y. H.; Zhang, H.; Kim, K.; Lee, J.; Ma, Z., Photolithography-Based Nanopatterning Using Re-entrant Photoresist Profile, ACS Appl. Mater. Interfaces, 2018, 10, 8117-8123.
38. Marneffe, J.-F. d.; Chan, B. T.; Spieser, M.; Vereecke, G.; Naumov, S.; Vanhaeren, D.; Wolf, H.; Knoll, A. W., Conversion of a Patterned Organic Resist into a High Performance Inorganic Hard Mask for High Resolution Pattern Transfer, ACS Nano, 2018, 12, 11152-11160.
39. Marneffe, J.-F. d.; Yamaguchi, T.; Fujikawa, M.; Rezvanov, A.; Chanson, R.; Zhang, J.; Otell, Z. e.; Babaei-Gavan, K.; Nozawa, S.; Kikuchi, Y.; Maekawa, K., Use of a Thermally Degradable Chemical Vapor Deposited Polymer Film for Low Damage Plasma Processing of Highly Porous Dielectrics, ACS Appl. Electron. Mater., 2019, 1, 2602-2611.
40. Yu, L.; Li, G.; Zhang, X.; Ba, X.; Shi, G.; Li, Y.; Wong, P. K.; Yu, J. C.; Yu, Y., Enhanced Activity and Stability of Carbon-Decorated Cuprous Oxide Mesoporous Nanorods for CO2 Reduction in Artificial Photosynthesis, ACS Catal., 2016, 6, 6444-6454.
41. Li, Z.; Cheng, H.; Li, Y.; Zhang, W.; Yu, Y., H2O2 Treated CdS with Enhanced Activity and Improved Stability by a Weak Negative Bias for CO2 Photoelectrocatalytic Reduction, ACS Sustain. Chem. Eng., 2019, 7, 4325-4334.
42. Xue, N.; Lin, Z.; Li, P.; Diao, P.; Zhang, Q., Sulfur-Doped CoSe2 Porous Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction, ACS Appl. Mater. Interfaces, 2020, 12, 28288-28297.
43. 謝宗恩(2018)。魔術尺寸-硒化鎘奈米團簇物之結構解析與陰/陽離子取代之二維結構硒化鎘奈米片之應用探討。台北:國立臺灣師範大學。
44. Tonny, K. N.; Rafique, R.; Sharmin, A.; Bashar, M. S.; Mahmood, Z. H., Electrical, optical and structural properties of transparent conducting Al doped ZnO (AZO) deposited by sol-gel spin coating, AIP Advances, 2018, 8, 065307.
45. Li, F.; Men, Z.; Li, S.; Wang, S.; Li, Z.; Sun, C., Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 189, 621-624.
46. Zubair, M.; Mustafa, M.; Ali, A.; Doh, Y. H.; Choi, K. H., Improvement of solution based conjugate polymer organic light emitting diode by ZnO–graphene quantum dots, J. Mater. Sci.: Mater. Electron, 2015, 26, 3344-3351.
47. Xu, Y.-N.; Ching, W. Y., Electronic, optical, and structural properties of some wurtzite crystals, Phys. Rev. B, 1993, 48, 4335-4351.
48. Ziolkowska, D. A.; Jasinski, J. B.; Hamankiewicz, B.; Korona, K. P.; Wu, S.-H.; Czerwinski, A., In Situ XRD and TEM Studies of Sol-Gel-Based Synthesis of LiFePO4, Cryst. Growth Des, 2016, 16, 5006-5013.
49. Manova, D.; Mändl, S., In situ XRD measurements to explore phase formation in the near surface region, J. Appl. Phys., 2019, 126, 200901.
50. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 2015, 87.
51. Penner-Hahn, J. E., X-ray Absorption Spectroscopy. 2001.
52. Abuín, M.; Serrano, A.; Chaboy, J.; García, M. A.; Carmona, N., XAS study of Mn, Fe and Cu as indicators of historical glass decay, J. Anal. At. Spectrom., 2013, 28, 1118-1124.
53. Vladimir P. Z., Kirkendall effect in the two-dimensional lattice-gas model, Phys. Rev. E, 2019, 99, 012132