簡易檢索 / 詳目顯示

研究生: 白勝安
Pai, Sheng An
論文名稱: 探討七年級學生人體體溫恆定性心智模式與其一致性之關係
Investigate the relation between seventh grade students' mental models regarding the homeostasis of human body temperature and their consistency
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 138
中文關鍵詞: 人體體溫恆定性心智模式概念改變一致性
英文關鍵詞: the homeostasis of human body temperature, mental model, conceptual change, consistency
論文種類: 學術論文
相關次數: 點閱:224下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我國100學年度實施的97年國民中小學課程綱要中,將人體恆定性列為必須學習的能力指標之一。美國科學促進學會在Project 2061科學素養的基準中,指出國中人體生理學教學不應僅側重在生理結構和功能介紹,更應強調生命維持的基本需求,包括各個層次生理結構的互動以維持穩定的體內環境。
    本研究以二階層診斷問卷、半結構式訪談和教學錄影施測和記錄,探討56名七年級學生人體體溫恆定性心智模式類型與其一致性關係表現,以及心智模式與其一致性兩者受到教學影響的前後如何發生轉變。利用九個命題陳述和五個問題情境設計問卷試題,訪談問題則包括「體溫的改變」、「體溫改變時的反應」和「體溫來源」三類。
    研究結果如下:
    1、從教學前後的施測結果顯示,學生回答巨觀問題時答對率皆能超過65%,然而對於微觀的題目即使在教學後仍然低於40%,因此無法將顫抖與呼吸作用連結。
    2、學生在教學後,不論巨觀或微觀答題表現皆有顯著進步。在延宕測驗中,在巨觀答題的退步未達顯著,但在微觀答題退步達顯著。
    3、七年級學生的人體體溫恆定性心智模式類型有科學模式、運動模式、外因模式、不調節模式和混合模式。
    4、學生在「體溫來源」、「血液循環與體溫」、「運動、食慾與體溫」和「運動、血液循環與體溫」四個命題陳述中,心智模式一致性較低。前測和後測時在「氣候溫暖」的一致性較低,到了延宕測驗才具有較高的一致性。在「寒冷時運動」的情境中,學生在三次測驗的一致性都偏低。
    5、個案教師教學時較少連結生活經驗與微觀機制且未說明「氣候溫暖」和「寒冷時運動」時產熱方式和散熱方式的變化,使學生產生另有概念和降低答題一致性。
    研究結果顯示學生較熟悉可觀察到的巨觀現象,而不瞭解微觀機制,且在某些情境答題一致性偏低。教學應強化巨觀和微觀的連結,並涵蓋更多情境。未來研究中可以跨年級研究並結合人體體溫恆定相關「結構」和「功能」以獲得更多心智模式類型。

    Human physiology is one of the core competences in the 2008 curriculum guidelines for elementary and junior high school education which were implemented in the school year 2011. At the benchmark for science literacy of Project 2061, the American Association for the Advancement of Science points out that rather than only focusing on teaching physiological structure and its function, instruction should more emphasize on the essential requirements for life, including the interactions among all levels of the physiological structure in order to maintain the stable condition inside the body.
    There are 56 seventh grade students were involved. The data were collected from two-tier diagnostic instrument, semi-structure interview, and instruction. The goals were to investigate the relation between seventh grade students’ mental models regarding the homeostasis of human body temperature and their consistency, and how they were changed after instruction. The questionnaire was designed by using nine propositions and five scenario questions, and the interview questions including the change of the body temperature, the reaction to the change of the body temperature, and the source of the body temperature.
    The results of the study were as follows.
    First, over 65 % of the macroscopic related questions were answered correctly while under 40 % of the microscopic related questions even after instruction. The students still could hardly link the concept of tremble and respiration.
    Second, regardless of the performance on the macroscopic questions or the microscopic questions, the students got improved significantly after instruction. At the delay-test, the students
    Third, the types of seventh grade students’ mental models regarding the homeostasis of human body temperature were scientific model, exercise model, external factor model, none-adjustment model, and mixed model.
    Forth, the students performed worse on the mental models’ consistency at the questions regarding “the source of the body temperature”, “bloody circulation and body temperature”, and “exercise, appetite, and body temperature” than the questions regarding other propositions. They answered the questions regarding the situation of the warm weather less consistently at the pre-test and post-test than the questions regarding other situations, but got better consistent at the retention-test. When answering the questions regarding the situation of the exercise in cold weather, the students had low consistency at the three tests.
    Fifth, the teacher seldom connected the life experience and the microscopic mechanism. Besides, she did not explain how the heat production and the heat exchange varied at the situations of “the warm weather” and “the exercise in the cold weather”. Consequently, the students produced the alternative conceptions and answered low consistently.
    The results indicated that the students were familiar with the macroscopic and observable phenomenon, but they did not understand the microscopic mechanism, and answered them less consistently at some situations. The instruction should strengthen the connection between the macroscopic and the microscopic representations, and covered more contexts. Further research in this field might consider to conduct for cross-age subjects and integrate the concepts of the the homeostasis of human body temperature related structure and its functions to obtain more mental model types regarding the homeostasis of human body temperature.

    第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 4 第三節 名詞釋義 7 第四節 研究範圍與限制 9 第貳章 文獻探討 11 第一節 心智模式 11 第二節 人體體溫恆定性相關研究 20 第參章 研究方法 33 第一節 研究設計 33 第二節 研究對象 34 第三節 研究工具 35 第四節 研究流程 43 第五節 資料處理與分析 46 第肆章 研究結果與討論 59 第一節 人體體溫恆定性的另有概念 59 第二節 另有概念修正情形 63 第三節 人體體溫恆定性心智模式類型與演變情形 65 第四節 答題一致性的表現情形 87 第五節 人體體溫恆定性概念連結與教學的影響 92 第伍章 結論與建議 115 第一節 結論 115 第二節 未來研究方向與教學建議 118 參考文獻 120 附錄 125 附錄一:二階層診斷問卷試題內容 125 附錄二 前測和後測半結構訪談問題內容 135 附錄三 延宕測驗半結構訪談問題內容 136 表次 表2-2-1 人體體溫恆定性的另有概念 29 表3-3-1 初始的國中人體體溫恆定性命題陳述 36 表3-3-2 修正後的國中人體體溫恆定性命題陳述 37 表3-3-3 體溫恆定性二階層問卷雙向細目表 41 表3-5-1 二階層問卷選項與心智模式的對應 53 表3-5-2 各個心智模式對於三種現象的解釋 58 表4-1-1 學生在前測、後測和延宕測驗中問卷兩個階層的答題表現 60 表4-2-1 學生在教學前後和延宕測驗的問卷答題進步情形 63 表4-2-2 兩組學生在教學前後各個命題陳述相關問題的進步情形 64 表4-3-1 人體產熱方式的心智模式演變途徑 67 表4-3-2 人體散熱方式的心智模式演變途徑 69 表4-3-3 人體體熱來源的心智模式演變途徑 70 表4-3-4 食慾與體溫關係的心智模式演變途徑 72 表4-3-5 血液循環系統與體溫關係的心智模式演變途徑 73 表4-3-6 排汗與體溫關係的心智模式演變途徑 75 表4-3-7 運動與體溫關係的心智模式演變途徑 77 表4-3-8 運動、食慾與體溫關係的心智模式演變途徑 78 表4-3-9 運動、血液循環和體溫關係的心智模式演變途徑 80 表4-4-1 三次測驗中各個命題陳述的心智模式一致性進步情形 89 表4-4-2 三次測驗中各個情境的情境相依性進步情形 91 表4-5-1 前測時學生對於體溫的改變的解釋 94 表4-5-2 前測時學生預測體溫改變的反應 96 表4-5-3 後測時學生對於體溫改變的解釋 101 表4-5-4 後測時學生預測體溫改變的反應 103 表4-5-5 延宕測驗時學生對於體溫改變的解釋 107 表4-5-6 延宕測驗時學生預測體溫改變的反應 108 表4-5-7 前測、後測和延宕訪談時學生的心智模式類型 111 表4-5-8 個案教師教學口語資料分析 113 圖次 圖1-1-1 人體體溫恆定機制相關生理結構 2 圖2-1-1 孩童地球形狀心智模式類型 14 圖2-1-2 心智模式的概念假設認知結構 16 圖2-1-3 學生的血液循環心智模式 18 圖2-1-4 Chi的本體樹理論架構 19 圖2-2-1 學生的血糖恆定性心智模式範例 30 圖3-3-1 二階層診斷試題發展過程 35 圖3-3-2 人體體溫恆定性專家概念圖 38 圖3-4-1 研究流程圖 45 圖3-5-1 不調節模式 50 圖3-5-2 外因模式 51 圖3-5-3 運動模式 51 圖3-5-4 科學模式 52 圖4-1-1 兩組學生在前測、後測和延宕測驗各個命題陳述的答題百分比表現 61 圖4-1-2 學生在前測、後測和延宕測驗各個命題陳述的進步情形 61 圖4-3-1 人體產熱方式的心智模式分布情形 66 圖4-3-2 人體散熱方式的心智模式分布情形 68 圖4-3-3 人體體溫來源的心智模式分布情形 70 圖4-3-4 食慾與體溫關係的心智模式分布情形 71 圖4-3-5 血液循環系統與體溫關係的心智模式分布情形 73 圖4-3-6 排汗與體溫關係的心智模式分布情形 74 圖4-3-7 運動與體溫關係的心智模式分布情形 76 圖4-3-8 運動、食慾與體溫關係的心智模式分布情形 78 圖4-3-9 運動、血液循環和體溫關係的心智模式分布情形 79 圖4-3-10 心智模式一致性標準超過50%時的心智模式分布情形 82 圖4-3-11 心智模式一致性標準超過33%時的心智模式分布情形 83 圖4-3-12 心智模式一致性標準為超過50%時主要心智模式的改變情形 85 圖4-3-13 心智模式一致性標準為33%以上時主要心智模式的改變情形 86 圖4-4-1 三次測驗中各個命題陳述的心智模式一致性表現情形 88 圖4-4-2 三次測驗中各個情境的情境相依性表現情形 91 圖4-5-1 課本人體體溫恆定機制內容片段 113 圖4-5-2 學生的心智模式、教學與二階層診斷測驗的互動關係 114

    一、中文部份
    吳國盛(1998)。科學的歷程。新竹市:理藝。
    林英智(2009)。國民中學自然與生活科技課本第一冊。台北市:翰林。
    林素華、劉燿誠(2010)。國中學生「恆定性」的另有概念之探討。科學教育學刊,18(1),25-41。
    林陳涌和徐毓慧(2002)。國一學生對血糖恆定性的先前概念。科學教育學刊,10(4),378-387。
    邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    邱美虹、劉俊庚(2008)。從科學學習的觀點探討模型與建模能力。科學教育月刊,314,2-20。
    張志康、林靜雯和邱美虹(2009)。跨年級中學生電路心智模式研究。科學教育研究與發展季刊,53,24-42。
    郭重吉(2009)。國民中學自然與生活科技課本第一冊。台北市:南一。
    陳世煌(2009)。國民中學自然與生活科技課本第一冊。台北市:翰林。
    黃佳杏(2007)。從突現過程本體面向探討生物恆定性概念改變—以七年級學生為例。國立臺灣師範大學科學教育研究所教學碩士班碩士論文(未出版)。
    傅雪惠(2002)。國小學童溫度相關概念學習路徑之研究。國立新竹教育大學課程與教學研究所碩士論文(未出版)。
    潘震澤、楊志剛、高毓儒、高娟娟、袁宗凡、謝坤叡(譯) (2006)。Eric P. Widmaier, Hershel Raff, Kelvin T. Strang, & Eric Widmaier著。人體生理學。臺北市:合記。
    鍾楊聰、夜開溫、崔文慧、徐歷鵬(譯)(2005)。Neil A. Campbell & Jane B. Reece著。生物學。臺北市:偉明。
    鍾曉蘭(2007)。以多重表徵的模型教學探究高二學生理想氣體心智模式的類型及演變的途徑。國立臺灣師範大學科學教育研究所教學碩士班碩士論文(未出版)。
    蘇采禾(譯)(2007)。科學簡史—250個影響人類的重大發現(原作者:Peter Tallack)。臺北市:時報文化。

    二、英文部份
    American Association for the Advancement of Science (1993). Benchmarks for Science Literacy. Retrieved from http://www.project2061.org/
    Barak, F., Sheva, B. & Gorodetsky, M. (1999). As ‘process’ as it can get: students’ understanding of biological process. International Journal of Science Education, 21(12), 1281-1292.
    Barrass, R. (1984). Some misconceptions and misunderstandings perpetuated by teachers and textbooks of biology. Journal of Biological Education, 18(3), 201-206.
    Chinn, C. A. & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of research in science teaching, 35(6), 623-654.
    Chang, S. N. (2007). Externalising students’ mental models through concept maps.Education Research, 41, 107-112.
    Chang, S. N. & Chiu, M. H. (2004). Probing students’ conceptions concerning homeostasis of blood sugar via concept mapping. Proceeding of the Annual Meeting of the National Association for Research in Science Teaching, April 01-04, Vancouver/Canada.
    Chi, M. T. H. (2008). Three types of conceptual change: belief revision, mental model transformation, and categorical shift. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 61–81). New York: Routledge. Wandersee, J.H., Mintzes, J.
    Chi, M. T. H., de Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439-477.
    Chi, M. T. H. & Roscoe, R. D. (2002). The processes and challenges of conceptual change. In M. Limon and L. Mason (Eds), Reframing the process of conceptual change: Integrating theory and practice. (pp. 3-27). Dordrecht, The Netherlands: Kluwer.
    Collins, A. & Gentner, D. (1987). How people construct mental models. In D. Holland and N. Quinn (Eds.), Cultural Models in Thought and Language. Cambridge UK: Cambridge University Press, 243-265.
    diSessa, A. A., (2008). A bird’s-eye view of the “pieces” vs. “coherence” controversy (from the “pieces” side of the fence). In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 35–60). New York: Routledge. Wandersee, J.H., Mintzes, J.
    Finley, F. N., Stewart, J., & Yarroch, W. L. (1982). Teachers’ perceptions of important and difficult science content. Science Education, 66(4). 531-538.
    Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000).Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing Models in Science Education (pp. 3-17). Dordrecht, The Netherlands: Kluwer Academic Publisher.
    Gómez Crespo, M. A., & Pozo,J.I.(2005).The Embodied Nature of Implicit Theories: The Consistency of Ideas About the Nature of Matter. Cognition and Instruction, 23(3), 351-387.
    Harrison, A. G. & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: implications for teaching chemistry. Science Education, 80(5), 509-534.
    Jonassen, D. (2008). Model building for conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 676–693). New York: Routledge. Wandersee, J.H., Mintzes, J
    Lopresti, V. C.& Lizotte, D. M. (1988). Teaching dynamic homeostasis: A laboratory exercise in cardiac dynamic utilizing biofeedback software. Journal of Biological Education, 22(4), 304-306.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog. W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2), 211-227.
    Simpson, W. D., & Marek, E. A. (1988). Understandings and misconceptions of biology conceptions held by students attending small high schools and students attending large high schools. Journal of Research in Science Teaching, 25(5), 361-374.
    Slotta, J. D. & Chi, M. T. H. (2006). The impact of ontology training on conceptual change: Helping students understand the challenging topics in science. Cognition and Instruction.
    Treagust, D. F. (1988). Development and use of diagnostic test to evaluate student’s misconceptions in science. International Journal of Science Education,10(2), 159-169.
    Treagust, D. F. (1995). Diagnostic assessment of student’s science knowledge. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice. (pp. 327-346). Mahwah, NJ: Erlbaum.
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45-69.

    Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535-585.
    Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day / night cycle. Cognitive Psychology,18(1), 123-183.
    Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the problem of conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 3–34). New York: Routledge. Wandersee, J.H., Mintzes, J.
    Westbrook, S. L., & Marek, E. A. (1992). A cross age study of student understanding of the concept of homeostasis. Journal of Research in Science Teaching, 29(1), 51-61.
    Wiser, M. & Smith, C. L., (2008). Learning and teaching about matter in grades K-8: when should the atomic-molecular theory be introduced? In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 205–239). New York: Routledge. Wandersee, J.H., Mintzes, J.

    QR CODE