研究生: |
杜孟達 Meng-Da Du |
---|---|
論文名稱: |
奈米銀的製備和其在抗菌纖維上的應用 |
指導教授: |
許貫中
Hsu, Kung-Chung |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 共聚物 、合成 、保護劑 、銀粒子 、抗菌 、纖維 |
英文關鍵詞: | copolymer, synthesis, protecting agent, silver particle, antibacterial activity, fiber |
論文種類: | 學術論文 |
相關次數: | 點閱:877 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要為合成一種水溶性共聚物PAD,可同時做為銀粒子的保護劑和布料的親水劑,PAD是由丙烯醯胺和DAPA為反應物在適當條件下反應所得之產物。研究過程中改變PAD/AgNO3比例、pH值,以UV-VIS光譜圖探討PAD對形成的奈米銀粒子的分散性影響,結果顯示在pH值接近11時進行還原可得分散較好的銀粒子;而由TEM圖得知當PAD/AgNO3比例約為1時比濃度比為1.67, 5時,PAD有較佳的銀粒子保護效果。將Nylon布料經浸泡於不同pH值的PAD/Ag溶液一段時間後,在pH值約為10.5時有99%的抗菌效果,但抗菌率經15次以上的清洗後僅剩56%,有明顯降低的現象;若Nylon布料先經由商用親水劑SPP處理,再經浸泡PAD/Ag溶液後可得穩定的殺菌效果。將聚酯(PET)、Nylon等疏水性布料浸泡於PAD、還原劑和AgNO3溶液中,PAD可作為布料的親水劑,使銀離子和還原後的奈米銀粒子能有效分散在布料結構中,即使布料經過20次的清洗,奈米銀粒子仍可附著於布料上,使有加入PAD處理的PET布料其抗菌率明顯優於未加入PAD的PET改質布料;而在銀離子濃度小於0.5mM時,PAD對Nylon布料提升抗菌率的影響才會顯現出來。在未加入PAD的情況下以高溫法改質布料時,Spandex中的PU成份有助於銀粒子的形成,所以使Nylon91在抗菌能力上優於Nylon100,此外,可由UV-visible光譜圖發現每次高溫法所消耗的銀離子莫耳數少,所以銀離子溶液可重覆使用,減少銀原料的浪費;而加入PAD時,PAD則明顯提升銀粒子的生成,所以改質後的Nylon布料皆有穩定的抗菌效果。
A copolymer, PAD, was synthesized from acrylamide and DAPA in a proper reaction conditions. Experimentally, different ratios of PAD/AgNO3 solutions under different pH values were prepared and their effects on the dispersion property of formed Ag nano particles investigated by TEM and UV-VIS instruments. The results indicate that proper PAD/AgNO3 molar ratio and pH≒11 could prepare Ag nano particles in good dispersion. The antibacterial property was improved if the fiber was pre-treated with a hydrophilic agent SPP. When PET and Nylon hydrophobic textiles are immersed into PAD/reducing agent/AgNO3 solution, PAD could make the textiles to become hydrophilic. The Ag+ ions could be reduced to nano Ag particles and well-dispersed in the textile structure. After 20 times of laundering, the nano Ag particles still adhere onto textile texture and show antibacterial activity. PET textile modified by PAD and AgNO3 had better antibacterial activity than PET textile only modified by AgNO3. PAD could also improve antibacterial activity of modified Nylon when concentration of AgNO3 is lower than 0.5mM. When Nylon are modified by high temperature(120℃, 1.16atm) without PAD, PU group of spandex in the Nylon91 could produce more Ag particles than Nylon100. Therefore, Nylon91 have more stable antibacterial activity than Nylon100. Few moles of Ag ions would be extinguished by every time of high-temperature-modified, so solution of AgNO3 could be reapplied. There are much more Ag particles reduced by high temperature with PAD, so both Nylon91 and Nylon100 have good antibacterial activity. Finally, PAD copolymer of this invention act as a protecting agent of nano Ag particles and as a hydrophilic-enhancing agent for hydrophobic textiles.
1.Di Wu, and Y. Fang, J. Colloid Interface Sci., 265, 234-238, 2003.
2.Y. Badr, and M. A. Mahmound, J. Mol. Struct., 749, 187-192, 2005.
3.郭清癸、黃俊傑、牟中原,物理雙月刊,二十三卷,六期,2001.
4.B. Yin, H. Ma, S. Wang, and S. Chen, J. Phys. Chem. B, 107, 8898-8904, 2003.
5.S. Navaladian, B. Viswanathan, R. P. Viswanath, and T. K. Varadarajan, Nanoscale Res. Lett., 2, 44-48, 2007.
6.J. He, T. Kunitake, and A. Nakao, Chem. Mater., 15, 4401-4406, 2003.
7.陳龍賓,高分子對鈦酸鋇分散性能與電性之研究,國立台灣師範大學化學研究所博士論文,2008.
8.A. Henglein, and M. Giersig, J. Phy. Chem. B, 103, 9533-9539, 1999.
9.P. L. Kuo, and W. F. Chen, J. Phys. Chem. B, 107, 11267-11272, 2003.
10.R. M. Crooks, M. Zhao, L. Sun, V. Chechik, and L. K. Yeung, Acc. Chem. Res., 34, 181-190, 2001.
11.Z. Zhang, B. Zhao, and L. Hu, J. Solid State Chem., 121, 105-110, 1996.
12.S. Biggs and T. W. Healy, J. Chem. Soc. Faraday Trans., 90, 3415-3421, 1994.
13.陳文儀,陰離子型共聚物的合成及應用於鈦酸鋇漿體的分散,國立台灣師範大學化學研究所碩士論文,2008.
14.P. Jenkins and M. Snowden, Adv. Colloid Interface Sci., 68, 57-96, 1996.
15.N. Toshima, T. Yonezawa, and K. Kushihashi, J. Chem. Soc., Faraday Transactions, 89, 2537-2543, 1993.
16.N. Vigneshwaran, R. P. Nachane, R. H. Balasubramanya, and P. V. Varadarajan, Carbohydrate Res., 341, 2012-2018, 2006.
17.C. H. Tseng, C. C. Wang, and C. Y. Chen, J. Phys. Chem. B, 110, 4020-4029, 2006.
18.K. L. Tan, L. L. Woon, H. K. Wong, and K. G. Neoh, Macromolecules, 26, 2832-2836, 1993.
19.A. Irzh, N. Perkas, and A. Gedanken, Langmuir, 23, 9891-9897, 2007.
20.D. S. Soane, D. B. millward, M. R. Linford, R. Lau, E. G. Green, and W. Ware Jr., US Patent: US0183203 A1, 2005.
21.X. Wang, S. Li and S. Zhang, Langmuir, 24, 5585-5590, 2008.
22.H. J. Klasen, Burns, 26, 131-138, 2000.
23.H. J. Lee, and S. H. Jeong, Textile Res. J., 74, 442-447, 2004.
24.Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim, J. Biomed. Mater. Res., 52, 662-668, 2000.
25.W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park, Appl. Environ. Microbiol., 74, 2171-2178, 2008.
26.J. C. Tiller, S. B. Lee, K. Lewis, and A. M. Klibanov, Biotechnol. Bioeng., 79, 465-471, 2002.
27.K. Kuroda, and W. F. DeGrado, J. Am. Chem. Soc., 127, 4128-4120, 2005.
28.R. A. Madrid, R. S. Morales, L. C. Fierro, G V. N. Moorillon, M. M. Yoshida, E. O. Borunda, and F. J. Solis, J. Photochem. Photobiol. B: Biology, 70 , 45-50, 2003.
29.Y. Zhang, S. Zhong, M. Zhang and Y. Lin, J. Mater. Sci., 44, 457-462, 2009.
30.T. Maneerung, S. Tokura, and R. Rjuravanit, Carbonhydrate Polym., 72, 43-51, 2008.
31.P. S. K. Murthy, Y. M. Mohan, K. Varaprasad, B. Sreedhar and K. M. Raju, J. Colloid Interface Sci., 318, 217-224, 2008.
32.P. Saravanan, M. P. Raju, S. Alam, Mater. Chem. Phys., 103, 278-282, 2007.
33.H. Kong, and J. Jang, Chem. Commun., 3010-3012, 2008.
34.Z. Li, D. Lee, X. Sheng, R. E. Cohn, and M. F. Rubner, Langmuir, 22, 9820-9823, 2006.
35.L. Zhang, J. C. Yu, H. Y. Yip, Q. Li, K. W. Kwong, A. Xu, and P. K. Wong, Langmuir, 19, 10372-10380, 2003.
36.H. Tada, K. Teranishi, Y. Inubushi, and S. Ito, Chem. Commun., 2345-2346, 1998.
37.Y. H. Kim, D. K. Lee, H. G. Cha, C. W. Kim, and Y. S. Kang, J. Phys. Chem. C, 111, 3629-3635, 2007.
38.W. J. Jin, H. J. Jeon, J. H. Kim, and J. H. Youk, Synthestic Metals, 157, 454-459, 2007.
39.X. Xu, Q. Yang, Y. Wang, H. Yu, X. Chen, and X. Jing, Eur. Polym. J., 42, 2081-2087, 2006.
40.劉熾章, 纖維理化:纖維化學, 新學識文教出版中心, 1979.
41.M. J. Caulfield, G. G. Qiao and D. H. Solomon, Chem. Rev., 102, 3067-3083.
42.H. Kesim, Z. M. O. Rzaev, S. Dincer and E. Piskin, Polymer, 44, 2897-2909.
43.陳韋甫,以側接寡聚乙烯亞胺之聚丙烯胺擬樹枝狀高分子製備金屬奈米粒子,國立成功大學化學工程研究所碩士論文,2003.
44.H. Dong, D. Wang, Gang Sun and J. P. Hinestroza, Chem. Mater., 20, 6627-6632, 2008.