研究生: |
簡佩妏 Chien, Pei-Wen |
---|---|
論文名稱: |
拉曼光譜技術在顏料鑑定及建立資料庫上的應用 Identifying pigments and creating database by Raman spectroscopy |
指導教授: |
林震煌
Lin, Cheng-Huang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 拉曼光譜 、顏料 、碳酸鈣 |
英文關鍵詞: | Calcium carbonate |
DOI URL: | http://doi.org/10.6345/NTNU202000589 |
論文種類: | 學術論文 |
相關次數: | 點閱:155 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
白色顏料是繪畫上一個分常重要的顏料,加上畫家需要呈現不同的繪畫感覺,因此有許多以不同材料來源所製成的白色顏料。本論文選擇檢測快速且具有獨一無二的拉曼散射訊號的拉曼光譜技術對胡粉、鉛白、珍珠粉、白雲石、方解末、鋅白、鈦白、立德粉與水干雲母共9種白色顏料進行鑑定,並應用於畫作上的顏料分析
除了白色顏料的研究,本論文也選用7種碳酸鈣顏料,搭配本實驗室開發的LabVIEW拉曼光譜背景螢光減去程式,解決碳酸鈣顏料拉曼光譜螢光訊號干擾的問題。並且透過此程式具有將扣除的螢光訊號重新繪製成螢光光譜的特點。將7種碳酸鈣顏料被扣除的螢光訊號重新繪製成螢光光譜,並根據螢光最大波長的數值成功分辨出這7種碳酸鈣顏料。
本論文也進行畫作上顏料的鑑定。進行檢測的有五月雨以及奈良市登大路町十四這兩幅畫。透過拉曼光譜的結果,以及LabVIEW拉曼光譜背景螢光減去程式的應用。推測五月雨的白色蝴蝶可能使用胡粉或方解末這兩種以碳酸鈣為主成分的白色顏料。奈良市登大路町十四的打底層則推測出是使用鉛白,白色建築物則是使用鋅白。
本論文也會介紹LabVIEW文物修復專用光譜資料庫,此資料庫為國立臺灣師範大學美術系與化學系共同建立的資料庫,是國立台灣師範大學獨有的資料庫。與其他資料庫相比具有未知物光譜檢索功能。並且搭配Data thief圖檔轉換程式,能夠快速的擴充資料庫,目前資料庫內已有20種天然材料製成的顏料拉曼光譜。
White pigments are a very important pigment in painting. In addition, painters need to present different painting feelings, so there are many white pigments made from different materials sources. In this paper, the Raman spectroscopy technology that detects fast and has a unique Raman scattering signal is used to select 9 types of white powder, such as hu powder, lead white, pearl powder, dolomite, calcite, zinc white, titanium white, lithopone and hydromica. Identification of pigments and application of pigment analysis on paintings
In addition to the research of white pigments, seven calcium carbonate pigments were also selected in this thesis, which was used in conjunction with the LabVIEW Raman spectrum background fluorescence subtraction program developed by this laboratory to solve the problem of interference of the fluorescent signal of the calcium carbonate pigment Raman spectrum. And through this program has the feature of redrawing the deducted fluorescent signal into a fluorescent spectrum. The fluorescent signals deducted from the 7 kinds of calcium carbonate pigments are redrawn into the fluorescence spectrum, and the 7 kinds of calcium carbonate pigments are successfully distinguished according to the value of the maximum wavelength of fluorescence.
This paper also conducts the identification of the paint on the painting. Two paintings were tested, May Rain and No.14, Todaiji-cho, Nara City. Through the results of Raman spectroscopy and the application of LabVIEW Raman spectroscopy background fluorescence subtraction program. It is speculated that the white butterfly in May rain may use two kinds of white pigments with calcium carbonate as the main component. The ground floor of 14th Noboriojicho, Nara City speculates that lead white is used, and white buildings are zinc white.
This paper will also introduce the LabVIEW Spectral Database for the restoration of cultural relics. This database is a database jointly established by the Fine Arts Department and the Chemistry Department of the National Taiwan Normal University, and is a unique database of the National Taiwan Normal University. Compared with other databases, it has the spectral search function of unknown objects. And with the Data thief image file conversion program, the database can be quickly expanded. Currently, there are 20 kinds of pigment Raman spectra made of natural materials in the database.
1. Calza, C., et al., XRF applications in archaeometry: analysis of Marajoara pubic covers and pigments from the sarcophagus cartonage of an Egyptian mummy. X‐Ray Spectrometry: An International Journal, 2007, 36(5), 348-354.
2. Hochleitner, B., et al., Historical pigments: a collection analyzed with X-ray diffraction analysis and X-ray fluorescence analysis in order to create a database. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003, 58(4), 641-649.
3. Neelmeijer, C., et al., Paintings—a challenge for XRF and PIXE analysis. X‐Ray Spectrometry: An International Journal, 2000, 29(1), 101-110.
4. Stos-Fertner, Z., Hedges R.E., and Evely R., The application of the XRF-XRD method to the analysis of the pigments of Minoan painted pottery. Archaeometry, 1979, 21(2), 187-194.
5. Van der Snickt, G., et al., μ-XRF/μ-RS vs. SR μ-XRD for pigment identification in illuminated manuscripts. Applied Physics A, 2008, 92(1), 59-68.
6. Bruni, S., et al., Spectrochemical characterization by micro-FTIR spectroscopy of blue pigments in different polychrome works of art. Vibrational Spectroscopy, 1999, 20(1), 15-25.
7. Franquelo, M.L., et al., Comparison between micro-Raman and micro-FTIR spectroscopy techniques for the characterization of pigments from Southern Spain Cultural Heritage. Journal of Molecular structure, 2009, 924, 404-412.
8. Genestar, C. and Pons C., Earth pigments in painting: characterisation and differentiation by means of FTIR spectroscopy and SEM-EDS microanalysis. Analytical and bioanalytical chemistry, 2005, 382(2), 269-274.
9. Silva, C.E., et al., Diffuse reflection FTIR spectral database of dyes and pigments. Analytical and bioanalytical chemistry, 2006, 386(7-8), 2183-2191.
10. Veneranda, M., et al., In‐situ and laboratory Raman analysis in the field of cultural heritage: the case of a mural painting. Journal of Raman Spectroscopy, 2014, 45(3), 228-237.
11. 高永隆(民101)。飄流-高永隆現代重彩創作論述(博士論文)。取自臺灣博碩士論文系統(系統編號004476656)
12. Smekal, A., Zur quantentheorie der dispersion. Naturwissenschaften, 1923. 11(43), 873-875.
13. Jestel, N.L., Raman spectroscopy. Process analytical technology, 2010, 195-243.
14. Ben-Jaber, S., et al., Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nature communications, 2016, 7(1), 1-6.
15. Hirschfeld, T., et al., Remote spectroscopic analysis of ppm‐level air pollutants by Raman spectroscopy. Applied Physics Letters, 1973, 22(1), 38-40.
16. Kildal, H. and Byer R.L., Comparison of laser methods for the remote detection of atmospheric pollutants. Proceedings of the IEEE, 1971, 59(12), 1644-1663.
17. Kumar, P.C. and Wehrmeyer J.A., Stack gas pollutant detection using laser Raman spectroscopy. Applied spectroscopy, 1997, 51(6), 849-855.
18. Poultney, S.K., Brumfield M., and Siviter J., Quantitative remote measurements of pollutants from stationary sources using Raman lidar. Applied optics, 1977, 16(12), 3180-3182.
19. Robinet, L., et al., Raman investigation of the structural changes during alteration of historic glasses by organic pollutants. Journal of Raman Spectroscopy, 2006, 37(11), 1278-1286.
20. Singer, A.C., et al., Insight into pollutant bioavailability and toxicity using Raman confocal microscopy. Journal of microbiological methods, 2005, 60(3), 417-422.
21. Song, W., et al., Fabrication of a highly sensitive surface-enhanced Raman scattering substrate for monitoring the catalytic degradation of organic pollutants. Journal of Materials Chemistry A, 2015, 3(25), 13556-13562.
22. Wang, H.-H., et al., Transparent Raman-enhancing substrates for microbiological monitoring and in situ pollutant detection. Nanotechnology, 2011, 22(38), 385702.
23. Zhu, C., et al., A hierarchically ordered array of silver‐nanorod bundles for surface‐enhanced Raman scattering detection of phenolic pollutants. Advanced Materials, 2016, 28(24), 4871-4876.
24. Bonera, E., Scarel G., and Fanciulli M., Structure evolution of atomic layer deposition grown ZrO2 films by deep-ultra-violet Raman and far-infrared spectroscopies. Journal of non-crystalline solids, 2003, 322(1-3), 105-110.
25. Colomban, P. and Slodczyk A., Raman intensity: An important tool to study the structure and phase transitions of amorphous/crystalline materials. Optical materials, 2009, 31(12), 1759-1763.
26. Doğan, İ. and van de Sanden M.C., Direct characterization of nanocrystal size distribution using Raman spectroscopy. Journal of Applied Physics, 2013, 114(13), 134310.
27. Glerup, M., Nielsen O.F., and Poulsen F.W., The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by Raman spectroscopy and defect chemistry modeling. Journal of Solid State Chemistry, 2001, 160(1), 25-32.
28. Kammer, M., et al., Spatially resolved determination of the structure and composition of diatom cell walls by Raman and FTIR imaging. Analytical and bioanalytical chemistry, 2010, 398(1), 509-517.
29. Kawakami, M., et al., Structure analysis of coke, wood charcoal and bamboo charcoal by Raman spectroscopy and their reaction rate with CO2. ISIJ international, 2005, 45(7), 1027-1034.
30. Smit, C., et al., Determining the material structure of microcrystalline silicon from Raman spectra. Journal of applied physics, 2003, 94(5), 3582-3588.
31. Walrafen, G., et al., Raman spectrum and structure of silica aerogel. The Journal of chemical physics, 1985, 82(5), 2472-2476.
32. Xiong, Q., et al., Raman spectroscopy and structure of crystalline gallium phosphide nanowires. Journal of nanoscience and nanotechnology, 2003, 3(4), 335-339.
33. Yue, G., et al., Photoluminescence and Raman studies in thin-film materials: Transition from amorphous to microcrystalline silicon. Applied Physics Letters, 1999, 75(4), 492-494.
34. Braz, A., M. López-López, and García-Ruiz C., Raman spectroscopy for forensic analysis of inks in questioned documents. Forensic science international, 2013, 232(1-3), 206-212.
35. De Gelder, J., et al., Forensic analysis of automotive paints by Raman spectroscopy. Journal of Raman Spectroscopy, 2005, 36(11), 1059-1067.
36. Miller, J.V. and Bartick E.G., Forensic analysis of single fibers by Raman spectroscopy. Applied spectroscopy, 2001, 55(12), 1729-1732.
37. Virkler, K. and Lednev I.K., Raman spectroscopic signature of semen and its potential application to forensic body fluid identification. Forensic science international, 2009, 193(1-3), 56-62.
38. Virkler, K. and Lednev I.K., Forensic body fluid identification: the Raman spectroscopic signature of saliva. Analyst, 2010, 135(3), 512-517.
39. Best, S.P., Clark R.J., and Withnall R., Non-destructive pigment analysis of artefacts by Raman microscopy. Endeavour, 1992, 16(2), 66-73.
40. Burgio, L., Ciomartan D.A., and Clark R.J., Pigment identification on medieval manuscripts, paintings and other artefacts by Raman microscopy: applications to the study of three German manuscripts. Journal of Molecular Structure, 1997, 405(1), 1-11.
41. Burgio, L. and Clark R.J., Comparative pigment analysis of six modern Egyptian papyri and an authentic one of the 13th century BC by Raman microscopy and other techniques. Journal of Raman Spectroscopy, 2000, 31(5), 395-401.
42. Burgio, L., Clark R.J., and Gibbs P.J., Pigment identification studies in situ of Javanese, Thai, Korean, Chinese and Uighur manuscripts by Raman microscopy. Journal of Raman Spectroscopy, 1999, 30(3), 181-184.
43. Burgio, L., et al., Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy. Applied Spectroscopy, 2000, 54(4), 463-469.
44. Burgio, L., et al., Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6), 905-913.
45. Correia, A.M., et al., Pigment study by Raman microscopy of 23 paintings by the Portuguese artist Henrique Pousão (1859–1884). Journal of Raman Spectroscopy, 2007, 38(11), 1390-1405.
46. Edwards, H., et al., Raman spectroscopic studies of a 13th century polychrome statue: identification of a ‘forgotten’pigment. Journal of Raman Spectroscopy, 2000. 31(5): p. 407-413.
47. Faurel, X., Vanderperre A., and Colomban P., Pink pigment optimization by resonance Raman spectroscopy. Journal of Raman Spectroscopy, 2003, 34(4), 290-294.
48. Leona, M., et al., Identification of the Pre-Columbian Pigment Mayablue on Works of Art by Noninvasive UV-Vis and Raman Spectroscopic Techniques. Journal of the American Institute for Conservation, 2004, 43(1), 39-54.
49. Sandalinas, C., et al., Experimental confirmation by Raman spectroscopy of a Pb-Sn-Sb triple oxide yellow pigment in sixteenth‐century Italian pottery. Journal of Raman Spectroscopy, 2006, 37(10), 1146-1153.
50. Vandenabeele, P., et al., Pigment investigation of a late-medieval manuscript with total reflection X-ray fluorescence and micro-Raman spectroscopy. Analyst, 1999, 124(2), 169-172.
51. Zuo, J., et al., Identification of the pigment in painted pottery from the Xishan site by Raman microscopy. Journal of Raman Spectroscopy, 1999, 30(12), 1053-1055.
52. Farsang, S., Facq S., and Redfern S.A., Raman modes of carbonate minerals as pressure and temperature gauges up to 6 GPa and 500 C. American Mineralogist: Journal of Earth and Planetary Materials, 2018, 103(12), 1988-1998.
53. Prencipe, M., et al., The vibrational spectrum of calcite (CaCO 3): an ab initio quantum-mechanical calculation. Physics and Chemistry of Minerals, 2004, 31(8), 559-564.
54. Simkiss, K., Variations in the crystalline form of calcium carbonate precipitated from artificial sea water. Nature, 1964, 201(4918), 492-493.
55. Weiss, I.M., et al., Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. Journal of Experimental Zoology, 2002, 293(5), 478-491.
56. De, S., et al., Anion effect in linear silver nanoparticle aggregation as evidenced by efficient fluorescence quenching and SERS enhancement. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 131(1-3), 111-123.
57. Emamian, S., et al. Detection of 2, 4-dinitrotoluene (DNT) using gravure printed surface enhancement Raman spectroscopy (SERS) flexible substrate. IEEE, 2014, 1069-1072
58. Fales, A.M. and Vo-Dinh T., Silver embedded nanostars for SERS with internal reference (SENSIR). Journal of Materials Chemistry C, 2015, 3(28), 7319-7324.
59. Fleischmann, M., Hendra P., and McQuillan A., RAMAN SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELEC. Chemical physics letters, 1974, 26(2).
60. Hwang, J., Lee S., and Choo J., Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B. Nanoscale, 2016, 8(22), 11418-11425.
61. Jeanmaire, D.L. and Van DuyneR .P., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry and interfacial electrochemistry, 1977, 84(1), 1-20.
62. Karvonen, L., et al., SERS-active silver nanoparticle aggregates produced in high-iron float glass by ion exchange process. Optical Materials, 2011, 34(1), 1-5.
63. Kurouski, D., et al., Surface-enhanced Raman spectroscopy: From concept to practical application. Spectroscopy, 2017, 32, 11.
64. Peksa, V., et al., Quantitative SERS analysis of azorubine (E 122) in sweet drinks. Analytical chemistry, 2015, 87(5), 2840-2844.
65. Pozzi, F., et al., SERS discrimination of closely related molecules: a systematic study of natural red dyes in binary mixtures. The Journal of Physical Chemistry C, 2016, 120(37), 21017-21026.
66. Whitney, A.V., Van DuyneR .P., and Casadio F., An innovative surface‐enhanced Raman spectroscopy (SERS) method for the identification of six historical red lakes and dyestuffs. Journal of Raman Spectroscopy, 2006, 37(10), 993-1002.
67. Zaleski, S., et al., Toward monitoring electrochemical reactions with dual-wavelength SERS: Characterization of rhodamine 6G (R6G) neutral radical species and covalent tethering of R6G to silver nanoparticles. The Journal of Physical Chemistry C, 2016, 120(43), 24982-24991.
68. Zhang, K., et al., A facile surface-enhanced Raman scattering (SERS) detection of rhodamine 6G and crystal violet using Au nanoparticle substrates. Applied Surface Science, 2015, 347, 569-573.
69. Zhao, H., et al., Fluorescence quenching of osthole by silver nanoparticles. J.O.S.A B, 2013, 30(9), 2387-2392.
70. Fernandes, R.F., et al., Raman spectroscopy as a tool in differentiating conjugated polyenes from synthetic and natural sources. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 134, 434-441.
71. Smith, C.P., et al., PINK-TO-RED CORAL: A GUIDE TO DETERMINING ORIGIN OF COLOR. Gems & Gemology, 2007, 43(1).
72. Urmos, J., Sharma S., and Mackenzie F., Characterization of some biogenic carbonates with Raman spectroscopy. American Mineralogist, 1991, 76(3-4), 641-646.