研究生: |
林玠虢 Lin, Chieh-Kuo |
---|---|
論文名稱: |
高精密度雙軸鐵心式永磁同步伺服線性馬達定位平台之控制器設計與性能分析 Controller Design and Performances Analysis for the Precision Platform of Two-axis Linear Permanent Magnet Iron Core Synchronous Motors |
指導教授: |
陳美勇
Chen, Mei-Yung |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 高精密度雙軸運動控制平台 、鐵芯式永磁同步伺服線性馬達 、可變結構控制 、適應控制 |
英文關鍵詞: | Two-axis high precision motion control platform, Linear permanent magnet iron core synchronous motor, Variable structure control, Adaptive control |
論文種類: | 學術論文 |
相關次數: | 點閱:131 下載:26 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出了適應性增量式滑動模式控制(AISMC)應用於雙軸式的鐵心式永磁伺服同步線性馬達,以建立高精密度之雙軸運動控制平台。AISMC之特色為在設計時會考慮過去的控制量輸入以降低滑動模式控制(SMC)的抖振現象,以及利用適應控制來即時估測與補償系統的不確定項,以達到提升系統精確度之目的。
為了建立出高精密度之雙軸運動平台,本研究會先運用磁場導向定理(field-orented control)將驅動馬達之三項控制電流轉換為d-q軸控制電流,並將其與線性馬達之磁推力方程式和機械模型整合後得出雙軸線性馬達平台的動態方程式。然而在馬達運作中會遭遇到許多外在干擾,諸如摩擦力、漣波效應及系統內部參數之變異量等,我們將這些干擾統稱為系統的不確定項並將其納入雙軸線性馬達平台的動態方程式內做考量,以建立出較為精細的動態方程式。依據上述所建立之系統動態方程式便可設計出高階控制器,在控制器設計階段我們會先設計SMC,由於其結構簡單和強健性高因此很適合用於線性馬達這類系統不確定性較多的系統中,但其缺點為在順滑模態時的抖振現象,為改善此現象我們設計了AISMC,其特色為在設計控制器時會考慮過去的控制量輸入,藉此抑制抖振現象,並利用適應控制來補償系統的不確定性,以提升雙軸運動平台之精密度。
在實驗階段我們會先分別對X軸與Y軸做獨立控制,以分析出SMC及依照其缺點來改良之AISMC的效能差異,透過定位控制及追跡控制之實驗結果分析可發現AISMC可有效的抑制抖振現象並且擁有較高的精確度,因此在雙軸同動追圓之實驗中我們便採用AISMC作為主要之控制器。
In this research, we proposed an adaptive incremental sliding mode control(AISMC) to achieve a two-axis high precision motion control platform. The features of AISMC are considering previous control action to reduce chattering phenomenon from sliding mode control(SMC) and compensating system uncertainties instantly to increase system accuracy by adaptive control.
To establish a two-axis high precision motion control platform, we will transfer three phase control currents to d-q axis control currents by field-oriented control, then integrate electromagnetic force of linear motor with mechanical model to get system dynamic equation of the two-axis linear motor platform. The linear motor will suffer some external disturbances during working such like friction force, ripple force and system uncertainties. We will integrate those disturbances, like system uncertainties, and consider them in the system dynamic equation of two-axis linear motor platform. Then, the controller design will be based on the system dynamic equation.
Frist, we design SMC, its simple structure and high robustness are quite suitable for linear motors which have many system uncertainties. However, the disadvantage of SMC is chattering phenomenon, and AISMC is designed to overcome it. The characteristics of AISMC are taking previous control action into account to suppress chattering phenomenon, and compensating system uncertainties by adaptive control to enhance precision accuracy of two-axis high precision motion control platform.
In experimental section, first the X axis and Y axis will be experimented separately to analyze the performance of SMC and AISMC. According to the experimental results of position control and tracking control, AISMC has better precision accuracy and is able to suppress chattering phenomenon. On the basis of above experimental results, we choose AISMC to be the main controller of the two-axis high precision motion control platform for tracking circle trajectory.
[1] F.-J. Lin, P.-H. Shen, and S.-P Hsu, “Adaptive Backstepping Sliding Mode Control for Linear Induction Motor Drive,” IEEE Transactions on Electric Power Applications, vol. 149, no. 3, pp. 184-194, May 2002.
[2] K.-K. Tan, S.-N. Huang, and T.-H. Lee, “Robust Adaptive Numerical Compensation for Friction and Force Ripple in Permanent-Magnet Linear Motors,” IEEE Transactions on Magnetics, vol. 38, no. 1, pp. 221-228, January 2002.
[3] C.-M. Lin, and C.-F. Hsu, “Adaptive Fuzzy Sliding-Mode Control for Induction Servomotor System,” IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 362-368, June 2004.
[4] W.-F. Xie, “Sliding-Mode-Observer-Based Adaptive Control for Servo Actuator with Friction,” IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1517-1527, June 2007.
[5] T.-L. Lee, K.-K. Tan, and S.Huang, “Adaptive Friction Compensation with a Dynamical Friction Model,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 1, pp. 133-140, February 2011.
[6] F.-J. Lin, P.-H. Shen, and P.-H. Shien, “Robust Recurrent-Neural-Network Sliding-Mode Linear Synchronous Motor,” IEE Proceedings on Control Theory and Applications, vol. 153, no. 1, pp.111-123, January 2006.
[7] Z. Jamaludin, H. V. Brussel, and J. Swevers ,“Friction Compensation of an XY Feed Table Using Friction-Model-Based Feedforward and an Inverse-Model-Based Disturbance Observer,” IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp.3848-3853, October 2009.
[8] 王順忠、陳秋麟編譯,「電機機械基本原理第四版」,東華書局 2004。
[9] R. Krishnan, “Electric Motors Drives Modeling, Analysis, and Control,” Prentice-Hall, 2001.
[10] C.-H. Lin, W.-D. Chou, and F.-J. Lin, “Adaptive Hybrid Control using a Recurrent Neural Network for a Linear Synchronous Motor Servo-Drive System,” IEE Proceedings on Control Theory and Applications, vol. 148, No. 2, pp. 156-168, March 2001.
[11] J. Rodellar, C. Iurian, F. Ikhouaneand, and R. Griñó, “Identification of a System with Dry Friction,” 2005.
[12] V. Lampaert, F. AI-Bender, and J. Swevers, “Experimental Characterization of Dry Friction at Low Velocities on a Developed Tribometer Setup for Macroscopic Measurements,” Tribology Letters, Vol. 16, No. 1, pp.95-105, January 2004.
[13] R. Kelly, J. Llamas, and R. Campa, “A Measurement Procedure for Viscous and Coulomb Friction,” IEEE Transactions on Instrumentation and measurement, vol. 49, no. 4, pp. 857-861, August 2000.
[14] M. Gäfvert, “Comparisons of Two Dynamic Friction Models,” Proceedings of the 1997 IEEE International Conference on Control Applications, pp.386-391, 1997.
[15] L. Bascetta, P. Rocco, and G. Magnani, “Force Ripple Compensation in Linear Motors Based on Closed-Loop Position-Dependent Identification,” IEEE/ASME Transactions on Mechatronics, vol. 15, No. 3, pp.349-359, June 2010.
[16] K.-K. Tan, T.-H. Lee, H.-F. Dou, S.-J. Chin, and S. Zhao, “Precision Motion Control with Disturbance Observer for Pulsewidth-Modulated-Driven Permanent-Magnet Linear Motors,” IEEE Transactions on Magnetic, vol. 39, No. 3, pp.1813-1818, May 2003.
[17] J.-J. E. Slotine, and W. Li ,Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, 1911.
[18] 陳永平、張浚林編著,「可變結構控制設計」,全華科技圖書股份有限公司,民國91年9月。
[19] M. Thoma, and M. Morar, Advances in Variable Structure and Sliding Mode Control, Springer, 2006
[20] T.-H. Liu, Y.-C. Lee, and Y.-H. Crang, “Adaptive Controller Design for a Linear Motor Control System,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 2, pp.601-616, December 2003.
[21] R. Marino, S. Peresada, and P. Tomei, “Global Adaptive Output Feedback Control of Induction Motors with Uncertain Rotor Resistance,” IEEE Transactions on Automatic Control, vol. 44, no. 5, pp.967-983, May 1999.
[22] F.-J. Lin, H.-J. Hsieh, and P.-H. Chou, “Tracking Control of a Two-Axis Motion System via a Filtering-Type Sliding-Mode Control with Radial Basis Function Network,” IET Control Theory & Application, vol. 4, no. 4, pp.655-671, 2010.
[23] H.-J. Hsieh, and P.-K. Huang, “Precise Tracking of a Piezoelectric Positioning Stage via a Filtering-Type Sliding-Surface Control with Chattering Alleviation,” IET Control Theory & Application, vol. 1, no. 3, pp.586-594, 2007.
[24] R. Shanazi, H. M. Shanechi and N. Pariz, “Position Control of Induction and DC Servomotors: A Novel Adaptive Fuzzy PI Sliding Mode Control,” IEEE Transatcion on Energy Conversion, vol. 1, no. 23, pp.138-147, March 2008.
[25] X. Yunjun, “Chattering Free Robust Control for Nonlinear Systems,” IEEE Transactions on Control Systems Technology, vol. 16, no. 6, pp.1352-1359, November 2008.
[26] X. Yunjun, and N. Li, “Authors’ Reply to Comments on Chattering Free Robust Control for Nonlinear Systems,” IEEE Transactions on Control Systems Technology, vol. 20, no. 2, pp. 563, March 2012.
[27] R. Potluri, “Comments on Chattering Free Robust Control for Nonlinear Systems,” IEEE Transactions on Control Systems Technology, vol. 20, no. 2, pp. 562, March 2012.
[28] B. Veselic, B. Perunicic-Drazenovic, and C. Milosavljevic, “Improved Discrete-Time Sliding-Mode Position Control Using Euler Velocity Estimation,” IEEE Transactions on Industrial Electronics, vol. 57, no. 11, pp. 3840-3847,November 2010.
[29] N. Khaled, and A. R. Ofoli, “An Incremental Sliding Mode Controller (ISMC) for Chattering Reduction,” IEEE Industry Applications Society Annual Meeting, pp. 1-5, 2011.
[30] J.-X. Xu, S. K. Panda, and T.-H. Lee, Real-Time Iterative Learning Control, Springer, 2009
[31] C.-K. Lin, and M.-Y. Chen, “Adaptive Incremental Sliding Mode Controller for a Linear Permanent Magnet Iron Core Synchronous Motor and Chattering Reduction,” SCIS&ISIS 2014, pp. 1059-1063, December 2014.
[32] HIWIN上銀科技「線性滑軌-技術手冊」。
[33] Elmo Motion Control, “SimpleIQLine Cornet Digital Servo Drive Installation Guide”.
[34] Copley Controls, “Xenus XTL User Guide”.
[35] 簡万菘「精密機械概論-光學尺篇」。
[36] Renishaw, “RGH22 series readhead”.
[37] National Instruments, “Device Specifications NI6363”.