研究生: |
鄭人杰 Cheng, Jeng-Chieh |
---|---|
論文名稱: |
以可變空間理論規劃智慧型手機之最適化產能 A Design of the Aspired Smartphone Production Capacity Based on the Changeable Space Theory |
指導教授: |
黃啟祐
Huang, Chi-Yo |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 85 |
中文關鍵詞: | 智慧型手機 、產能規劃 、De Novo規劃法 、可變空間 |
英文關鍵詞: | Operations Research |
DOI URL: | https://doi.org/10.6345/NTNU202204472 |
論文種類: | 學術論文 |
相關次數: | 點閱:138 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球智慧型手機市場自2008年開始快速成長,2014年全球智慧型手機出貨量約達12.7億台,年成長率達25.5%。隨著智慧型手機平均單價持續下探,新興市場開始中低階智慧型手機需求,預估2018年全球智慧型手機年出貨量有機會達到18億台,累計裝置數量全球將達38億台。觀察2013年的出貨成長率由50.7%下滑到2014年的25.2%,預估2016年全球智慧型手機出貨量全球成長率將下滑到9.3%,從數據顯示智慧型手機市場成長趨緩已漸趨近飽和。平均售價日益低落,產品生命週期漸短,且關鍵零組件之技術參數已趨如莫爾定律等之物理極限,產品差異化之難度漸增,再加上新興國家貨幣匯率波動劇烈及貿易屏障、平均工資高漲等問題,智慧型手機製造廠之產能極需最適化,以確保投資最小,產能最適。現今智慧型手機產能最適化之重要性日增,過去的研究主要都是在現有的資源底下進行產能最適化,但少有文獻或業界專家探討相關議題,而本篇論文要提破現有的框架,考量內外部的資源讓自己的產能及獲利最大化突破傳統數學規劃法柏拉圖前緣之限制,計算出手機產能最適化以位於台灣之全球主要智慧型手機業者為實證標的,驗證研究方法之可行性,研究結果與分析架構作為智慧型手機業者產能規劃之變數,求取最適之產能,以達成獲利與產能最佳方法之用。
The global smartphone market lifecycle has gradually entered the saturation stage. Besides, as the average sales price of smart phones increasingly drop continuously, the product life cycle get shorter, and the parameters of smartphone key components hit the physical limitations, differentiations of the smart phones becoming daily difficult. Most middle to low end smart phones have become commodities. How the capacity can further be optimized by leveraging outsourcing capacities so as to break the traditional Pareto frontier and achieve the meta-optimum are the aspired goal being pursued by the smart phone vendors. Albeit the topic is very important, very few or no past works focused on this issue The Changeable Space Technique based on the De Novo Programming approach. The proposed analytic technique can break the traditional Pareto frontier. An empirical study case based on one of the world‘s leading smartphone manufacturer being located in Taiwan as used to demonstrate the feasibility of the proposed analytic framework, the well-verified analytic framework can be used to optimize the capacity of smartphone factories.
Babic, Z., & Pavic, I. (1996). Multicriterial production planning by De Novo programming approach. International Journal of Production Economics, 43(1), 59-66.
Chianglin, C. Y., Lai, T. C., & Yu, P. L. (2007). Linear Programming Models With Changeable Parameters—Theoretical Analysis On" Taking Loss At The Ordering Time And Making Profit At The Delivery Time". International Journal of Information Technology & Decision Making, 6(04), 577-598.
Giuliano, A. E., & Eilber, F. R. (1985). The rationale for planned reoperation after unplanned total excision of soft-tissue sarcomas. Journal of Clinical Oncology, 3(10), 1344-1348.
Gumasta, K., Kumar Gupta, S., Benyoucef, L., & Tiwari, M. K. (2011). Developing a reconfigurability index using multi-attribute utility theory. International Journal of Production Research, 49(6), 1669-1683.
Huang, H.-S., Larbani, M., & Yu, P.-L. (2012). Quantification and applications of identification spheres. Human Systems Management, 31(2), 97-109.
Huang, J.-J., & Tzeng, G.-H. (2014). New thinking of multi-objective programming with changeable space–in search of excellence. Technological and Economic Development of Economy, 20(2), 254-273.
Hwang, C.-L., & Yoon, K. (2012). Multiple attribute decision making: methods and applications a state-of-the-art survey, 186(3), (Vol. 186) , 279-293.
Khorramshahgol, R., & Steiner, H. M. (1988). Resource analysis in project evaluation: a multicriteria approach. Journal of the Operational Research Society, 39(9), 795-803.
Larbani, M., & Yu, P. L. (2009). Two-person second-order games, Part 2: Restructuring operations to reach a win-win profile. Journal of Optimization Theory and Applications, 141(3), 641-659.
Larbani, M., & Yu, P. L. (2012). Decision making and optimization in changeable spaces, a new paradigm. Journal of Optimization Theory and Applications, 155(3), 727-761.
Larbani, M., & Yu, P. L. (2014). Effective Decision Making in Changeable Spaces, Covering and Discovering Processes: A Habitual Domain Approach Human-Centric Decision-Making Models for Social Sciences, 19(3), 131-161.
Leinbach, T. R., & Cromley, R. G. (1983). A goal programming approach to public investment decisions: a case study of rural roads in Indonesia. Socio-Economic Planning Sciences, 17(1), 1-10.
Li, H. L., & Yu, P. L. (1994). Optimal competence set expansion using deduction graphs. Journal of Optimization Theory and Applications, 80(1), 75-91.
Liou, J. J. H., & Tzeng, G.-H. (2012). Comments on ―Multiple criteria decision making (MCDM) methods in economics: an overview‖. Technological and Economic Development of Economy, 18(4), 672-695.
Massam, B. H. (1988). Multi-criteria decision making (MCDM) techniques in planning. Progress in planning, 30(4), 1-84.
Po, L. Y., & Zhang, D. (1990). A foundation for competence set analysis. Mathematical Social Sciences, 20(3), 251-299.
Shi, Y. (1995). Studies on optimum-path ratios in multicriteria De Novo programming problems. Computers & Mathematics with Applications, 29(5), 43-50.
Teng, J.-Y., & Tzeng, G.-H. (1996). A multiobjective programming approach for selecting non-independent transportation investment alternatives. Transportation Research Part B: Methodological, 30(4), 291-307.
Tzeng, G.-H. (2003). Multiple objective decision making in past, present, and future Multi-Objective Programming and Goal Programming ,9(1), 65-76.
Wiendahl, H. P., ElMaraghy, H. A., Nyhuis, P., Zäh, M. F., Wiendahl, H. H., Duffie, N., & Brieke, M. (2007). Changeable manufacturing-classification, design and operation. CIRP Annals-Manufacturing Technology, 56(2), 783-809.
Won, J. (1990). Multicriteria evaluation approaches to urban transportation projects. Urban Studies, 27(1), 119-138.
Yu, P. L., & Larbani, M. (2009). Two-person second-order games, Part 1: formulation and transition anatomy. Journal of Optimization Theory and Applications, 141(3), 619-639.
Yu, P. L., & Zhang, D. (1989). Competence Set Analysis for Effective Decision-Making. Control-Theory and Advanced Technology, 5(4), 523-547.
Yu, P. L., Haimes, Y. Y., Leach, M. R., Chankong, V., Haimes, Y. Y., Thadathil, J., . Gal, T. (1985). Decision making with multiple objectives. Lecture Notes in Economics and Mathematical Systems, 242.
Yu, P., & Zhang, D. (1992). Optimal expansion of competence sets and decision support. INFOR: Information Systems and Operational Research, 30(2), 68-84.
Yu, P.-L. (1991). Habitual domains. Operations Research, 39(6), 869-876.
Yu, P.-L., & Chen, Y.-C. (2012). Dynamic multiple criteria decision making in changeable spaces: from habitual domains to innovation dynamics. Annals of Operations Research, 197(1), 201-220.
Zavadskas, E. K., & Turskis, Z. (2011). Multiple criteria decision making (MCDM) methods in economics: an overview. Technological and economic development of economy, 17(2), 397-427.
ZelenÝ, M. (1990). Optimizing given systems vs. designing optimal systems: The De Novo programming approach. International journal of general systems, 17(4), 295-307.
Zeleny, M. (1995). Trade-offs-free management via De Novo programming. International Journal of Operations and Quantitative Management, 1(1), 3-13.
Zeleny, M. (1997). From Maximization to Optimization: MCDM and the Eight Models of Optimality Essays In Decision Making, 19(4), 107-119.