簡易檢索 / 詳目顯示

研究生: 李俊明
Chun-Ming Lee
論文名稱: 對光子晶體中光子能隙調變之各種方法之研究
METHODS FOR BANDGAP MODULATION IN ONE-DIMENSIONAL THE PHOTONIC CRYSTALS
指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 44
中文關鍵詞: 光子晶體光子能隙調變
英文關鍵詞: photonic crystals, bandgap, modulation
論文種類: 學術論文
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

光子晶體是由二或三種以上不同折射率材料週期排列而成的一種結構,在此結構中,某些頻段的電磁波將無法傳遞,這些頻段即為所謂的光子能隙。光子能隙的頻率範圍會受某些條件的改變而影響,例如入射光角度、不同的材料(折射率)或者週期結構的排列方式等。本文中將以幾種不同的數學形式來改變光子晶體結構的排列方式,並觀察其結果的光子能隙增益情形,藉由比較各種方式獲得對光子能隙調變的經驗。

The photonic crystals (PCs) are structures that periodically arranged by two or more different dielectric material. There are bnadgaps in its frequency band, and bandgaps will be changed when we change the structure (such as material, arrangement) or incident angle. In this thesis, we discuss some methods for bandgap modulation in 1-D PCs by change the structure. Above, we have described in Chapter 1.
In here, the basic structure we used is (AB)nA, when AB denote the unit cell, each representing two different material, n is the number of period. In Chapters 3, 4 and 5, we use “power-law” and “linear” and “disorder” three methods to modulate the structure, and we chose the best one by observe their effect. Then we change the material to match the best method, and observe it again in Chapter 6. Finally, in Chapter 7, we make a conclusions.

Abstract -------------------------------------i Acknowledgement -----------------------------ii Content ------------------------------------iii Chapter 1 Introduction --------------------------------1 1-1 Photonic Crystals ------------------------1 1-2 Motivations and Applications of PCs --------2 1-3 Thesis Overview ------------------------3 Chapter 2 Theoretical Method ------------------------4 2-1 Dynamical Matrix of a Medium --------4 2-2 A Two-boundary Problem ----------------7 2-3 Matrix Formulation for Multilayer System --9 2-4 Transmittance and Reflectance -------10 Chapter 3 PHOTONIC BANDGAP MODULATION OF A DIELECTRIC CHIRPED PHOTONIC CRYSTAL ---------------12 3-1 Introduction -----------------------12 3-2 Basic Equations -----------------------13 3-3 Numerical Results and Discussion -------16 3-4 Conclusion -------------------------------20 Chapter 4 PHOTONIC BANDGAP MODULATION OF A DIELECTRIC CHIRPED PHOTONIC CRYSTAL (II) ---------------21 4-1 Introduction -----------------------21 4-2 Basic Equations -----------------------21 4-3 Numerical Results and Discussion -------22 4-4 Conclusion -------------------------------25 Chapter 5 PHOTONIC BANDGAP MODULATION OF A DIELECTRIC CHIRPED PHOTONIC CRYSTAL (III) -----------26 5-1 Introduction -----------------------26 5-2 Basic Equations -----------------------26 5-3 Numerical Results and Discussion -------28 5-4 Numerical Results and Discussion -------34 Chapter 6 PHOTONIC BANDGAP MODULATION IN A CHIRPED METAL DIELECTRIC PHOTONIC CRYSTAL ---------------35 6-1 Introduction -----------------------35 6-2 Basic Equations -----------------------35 6-3 Numerical Results and Discussion -------36 6-4 Conclusion -------------------------------40 Chapter 7 Conclusions -------------------------------42 References -------------------------------43

1.H. T. Jiang, Chen, N. H. Liu, and S. Y. Zhu, “Engineering photonic crystal impuritw bands for multiple channeled optical switches,” Chin. Phys. Lett. 21, 101-103 (2004).

2.S. John, “Strong location of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett., Vol. 58, 2486-2489, (1987).

3.E. Yablomovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Phys. Rev. Lett, Vol. 58, 2059-2062, (1987).

4.J. D. Jounnaopoulos, R.D. Meade and J. N. Winn, “Photonic Crystals-Molding the Flow of Light”, http://ab-initio.mit.edu/book/. (1995).

5.G. Guida, A. de Lustrac, and A. Priou, “An introduction to photonic crystal band gap (PBG) materials,” Prog. In Electroman. Res. 41, 1-20 (2003).

6.Jihene ZAGHDOUDI,Mounir KANZARI, Bahri REZIG,”A Dielectric Chirped layered Mirror for Optical Telecommunication Wavelengths” OPTICAL REVIEW Vol. 14, No. 2 ,91–96 (2007).

7.Zhang, D., Z. Li, W. Hu, and B. Cheng, “Broadband optical reflector-an application of light localization in one dimension," Appl. Phys. Lett., Vol. 67, No. 17, 2431{2432, (1995).

8.C.-J. Wu, M.-H. Lee, W.-H. Chen, and T.-J. Yang, “A MID-INFRARED MULTICHANNELED FILTER IN A PHOTONIC CRYSTAL HETEROSTRUCTURE CONTAINING NEGATIVE-PERMITTIVITY MATERIALS”, J. of Electromagn. Waves and Appl., Vol. 25, 1360–1371, (2011)

9.C.-J. Wu, Y.-N. Rau, and W.-H. Han, “ENHANCEMENT OF PHOTONIC BAND GAP IN A DISORDERED QUARTER-WAVE DIELECTRIC PHOTONIC CRYSTAL”, Progress In Electromagnetics Research, PIER 100, 27{36, (2010)

10.LIU Song, ZHONG Shuangying, LIU Sanqiu, “A Study of Properties of the Photonic Band Gap of Unmagnetized Plasma Photonic Crysta”, Plasma Science and Technology, Vol.11, No.1,(2009)

11.Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha,” Omnidirection refection in one dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133{143, (2008).

12.Steinberg, A. M. and R. Y. Chiao, \Subfemtosecond determina tion of transmission delay times for a dielectric mirror (photonic band gap) as a function of the angle of incidence," Phys. Rev. A, Vol. 51, No. 5, 3525{3528, (1995).

13.John, S., “Strong localization of photons in certain disordered lattices,” Phys. Rev. Lett., Vol. 58, 2486–2489, (1987).

14.Bowden, C. M., J. P. Dowling, and H. O. Everitt, “Development and applications of materials exhibiting photonic band gaps: Introduction,” J. Opt. Soc. Am. B, Vol. 10, 280–413, (1993).

無法下載圖示 本全文未授權公開
QR CODE