簡易檢索 / 詳目顯示

研究生: 吳佾修
Wu, Yi-Hsiu
論文名稱: 硫磷化鉬修飾於p型矽基板之產氫光陰極
P-type Si Decorated by Phosphorus Doped Molybdenum Disulfide (MoS2-xPx) as Photocathode for Hydrogen Evolution
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 68
中文關鍵詞: 硫磷化鉬二硫化鉬光電化學水分解產氫反應
英文關鍵詞: MoS2-xPx, MoS2, Photoelectrochemical (PEC), Water splitting, Hydrogen evolution reaction (HER)
DOI URL: https://doi.org/10.6345/NTNU202202270
論文種類: 學術論文
相關次數: 點閱:212下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化石燃料之消耗,使能源短缺之問題浮出檯面,開發新再生能源儼然成為全球非常急迫之課題。本研究結合太陽能與氫能源,以經表面粗化成金字塔型的p型矽半導體作為光陰極進行光催化水分解。為了幫助電子傳遞至水溶液,以MoS2-xPx作為共催化物,利用滴落塗佈法將其修飾於矽晶片上。藉能量色散x射線光譜量測作為磷摻雜二硫化鉬之共催化物MoS2-xPx定性與定量之分析,其結果顯示磷之實際摻雜量近似於估計值;藉循環伏安法、拉曼光譜量測與x射線吸收光譜量測,顯示二硫化鉬經磷之摻雜能使活性端裸露,進而提升水分解之效率,若是摻雜過量則會導致取代反應過於劇烈,使活性點減少。於眾多比例中以x = 0.25之磷摻雜比例其特性最好,其進行光催化水分解之起始電位與0 V下光電流密度分別為0.29 V與-23.8 mA cm-2。
    然而滴落塗佈法雖然便利且快速,卻不能將共催化物完整覆蓋於矽晶片上。本研究藉原子層氣象沉積將二氧化鈦完整覆蓋於經表面粗化成金字塔型矽晶片表面作為保護層,以防止矽與氧離子結合產生二氧化矽以阻礙電子傳遞。結果顯示具二氧化鈦保護層之光陰極,二氧化鈦薄膜層越厚,其電流穩定性越好,然而其光生電流值越低。

    The consumption of petrochemical fuel make the problem of energy shortage come out, the development of new renewable energy has become a very urgent issue in the world. This study combines solar energy with hydrogen energy, by using the surface is roughened into a pyramid-type p-type Si as a photocathode carry out solar drive water splitting. To help electron transfer to the aqueous solution, MoS2-xPx was used as a co-catalyst and was decorated onto a silicon wafer surface by the drop-casting method. Quantitative and qualitative analysis of MoS2-xPx as phosphorus-doped molybdenum disulfide by energy dispersive x-ray spectrometry (EDS). The results show that the actual doping amount of phosphorus is similar to the estimated value. By measuring cyclic voltammetry (CV), Raman spectroscopy and x-ray absorption spectroscopy (XAS), it is shown that molybdenum disulfide (MoS2) can expose more active site by doping with phosphorus, and thus improve the efficiency of water splitting. If the dopant is excessive, the substitution reaction will be too severe and the active site will be reduced. When x = 0.25, the performance is the best. The onset potential and the photocurrent density at 0 V vs RHE were 0.29 V and -23.8 mA cm-2, respectively.
    However, drop-casting method, while convenient and fast, but not be able to complete a total of catalytic material covered on the silicon chip. In this study, titanium dioxide was completely covered by atomic layer deposition (ALD) on the surface of the pyramid-type silicon wafer as a protective layer to prevent silicon and oxygen ions combined to produce silicon dioxide to hinder electronic transmission. The study shows that the photocathode of the titanium dioxide protective layer, the thicker the titanium dioxide layer, the better the current stability, but the lower the photogenerated current value.

    摘要 I Abstract III 總目錄 IV 圖目錄 VI 表目錄 VIII 第一章:緒論 1 1.1研究動機 1 1.2光催化水分解產氫介紹 4 1.2.1原理介紹 4 1.2.2基本考量 6 1.2.3研究方向與目的 7 1.3文獻回顧 17 1.4研究策略 25 第二章:實驗步驟與分析儀器原理 27 2.1矽微米金字塔形貌製程 27 2.1.1元件基板 27 2.1.2 矽晶圓磨薄加工 27 2.1.3 矽晶圓清洗 27 2.1.4矽晶圓之鋁背電極製程 29 2.1.5矽晶圓微米金字塔形貌製程 29 2.1.6光陰極製作 30 2.2共催觸媒-硫磷化鉬(MoS2-xPx)之配製 31 2.2.2還原燒結與熱退火 32 2.3儀器設備與相關原理 33 (一)光電化學/電化學設備與分析 33 (二)拉曼光譜(Raman spectra)分析 37 (三)x射線吸收光譜(x-ray absorption spectroscopy;XAS) 39 (四)x射線繞射(x-ray diffraction;XRD)分析 40 (五)掃描式電子顯微鏡(scanning electron microscope;SEM) 41 (六)能量色散x射線光譜(Energy-dispersive x-ray spectroscopy;EDS) 42 (七)原子層化學氣相沉積(atomic layer chemical vapor deposition;ALD) 43 第三章:結果與討論 45 3.1 Si@MoS2-xPx光陰極 45 3.1.1 Si@MoS2-xPx之能量色散x射線光譜量測 46 3.1.2 Si@MoS2-xPx之光電化學量測分析 50 3.1.3 Si@MoS2-xPx之電化學量測分析 53 3.1.4 Si@MoS2-xPx光陰極之表面形貌 57 3.1.5 Si@MoS2-xPx之x射線繞射與拉曼分析 58 3.1.6 Si@MoS2-xPx之x射線吸收光譜測量分析 60 3.2 Si@MoS2-xPx光陰極之保護層 62 第四章:結論 65 參考文獻 67

    [1]https://www.eia.gov
    [2]http://stock2012.pixnet.net/blog/post/
    192318831-pm2.5%E6%87%B8%E6%B5%AE%E5%BE%AE%E7%B2%92%E6%98%AF%E4%BB%80%E9%BA%BC%3F-app%E7%9B%A3%E6%B8%ACsensor%E4%BE%86%E6%BA%90%2C%E7%A9%BA%E6%B0%A3%E6%B1%A1
    [3]http://www.environment-assured.com
    [4]http://conan1917.pixnet.net/blog/post/397763950-%E9%97%9C%E6%96%BC%E6%B0%AB%E8%83%BDhydrogen
    [5]https://scitechvista.nat.gov.tw/c/pyCz.htm
    [6]A. Fujishima, K. Honda, Nature, 1972, 238, 37
    [7]M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem Rev, 2010, 110, 6446-6473.
    [8]Baoshun Liu, Xiujian Zhao, Chiaki Terashima, Akira Fujishima, Kazuya Nakata, Phys. Chem. Chem. Phys, 2014, 16, 8751
    [9]https://en.wikipedia.org/wiki/Sunlight
    [10]https://zh.wikipedia.org/wiki/地殼含量
    [11]https://www.solarwind-sensor.com/knowledge/meaning-accuracy-precision-solar-energy-measurements/
    [12]https://zh.wikipedia.org/wiki/染料敏化太陽能電池
    [13]陳致融、劉如熹, 科學發展, 508期
    [14]C. Liu, J. Y. Tang, H. M. Chen, B. Liu, P. D. Yang, Nano Lett, 2013, 13, 2989
    [15]Xiaoxin Zou and Yu Zhang, Chem. Soc. Rev., 2015, 44, 5148
    [16]https://zh.wikipedia.org/wiki/摻雜(半導體)
    [17]http://www.jinmingqum.com.tw/news_show.asp?id=80
    [18]http://www.gdjyw.com/xstd/guangxue/105.htm
    [19]Shipu Li, Peng Zhang, Xuefeng Song, and Lian Gao, ACS Appl. Mater. Interfaces 2015, 7, 18560
    [20]http://www.microchemicals.eu/technical_information/silicon_etching.pdf
    [21]Carlos G. Morales-Guio and Xile Hu, Acc. Chem. Res. 2014, 47, 2671−2681
    [22]Miguel Cabán-Acevedo, Michael L. Stone1, J. R. Schmidt, Joseph G. Thomas, Qi Ding, Hung-Chih Chang, Meng-Lin Tsai, Jr-Hau He and Song Jin, Nature Materials, 2015, 4, 1245
    [23]Ruquan Ye , Paz del Angel-Vicente , Yuanyue Liu , M. Josefi na Arellano-Jimenez , Zhiwei Peng , Tuo Wang , Yilun Li , Boris I. Yakobson , Su-Huai Wei , Miguel Jose Yacaman , and James M. Tour, Adv. Mater. 2016, 28, 1427–1432
    [24]Wen Liu, Enyuan Hu, Hong Jiang, Yingjie Xiang, Zhe Weng, Min Li, Qi Fan , Xiqian Yu, Eric I. Altman and Hailiang Wang, Nat. Commun, 2016, 7, 10771
    [25] http://www.ndl.org.tw/tech/equipment
    [26] https://zh.wikipedia.org/wiki/六甲基二矽氮烷
    [27] https://en.wikipedia.org/wiki/Reference_electrode
    [28] Carlos G. Morales-Guio, Lucas-Alexandre Stern and Xile Hu, Chem. Soc. Rev., 2014, 43,6555
    [29] Blake J. Plowman, Anthony P. O’Mullane and Suresh K. Bhargava, Royal Society of Chemistry, 2011, 152
    [30] Jakob Kibsgaard and Thomas F. Jaramillo, Angew. Chem. Int. Ed. 2014, 53, 14433
    [31] http://www.twwiki.com/wiki/交流阻抗法
    [32] https://zh.wikipedia.org/wiki/拉曼光譜學
    [33] Dong Young Chunga, Seung-Keun Park, Young-Hoon Chunge, Seung-Ho Yua, Dong-Hee Lime, Namgee, Junge, Hyung Chul Hame, Hee-Young Parke, Yuanzhe Piao, Sung Jong Yooe and Yung-Eun Sunga, Nanoscale, 2014,6, 2131
    [34]http://chiuphysics.cgu.edu.tw/yun-ju/cguweb/SciTheme/Bragg100/HomeBragg.htm
    [35] https://zh.wikipedia.org/wiki/掃描電子顯微鏡
    [36]https://www.illustrationsource.com/stock/image/506563/the-components-of-a-scanning-electron-microscope-sem/
    [37] http://www.twword.com/wiki/X射線螢光光譜分析
    [38] http://www.eaglabs.com.tw/eds.html
    [39] http://www.dahyoung.com/thinktank_article.php?id=30
    [40] Adam M. Schwartzberg and Deirdre Olynick, Adv. Mater. 2015, 27, 5778
    [41]A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253

    下載圖示
    QR CODE