Author: |
高御圻 Kao, Yu-Chi |
---|---|
Thesis Title: |
遠端操控自動駕駛車輛系統中支援向量機之研究 Research on Support Vector Machines in Telecontrol Autopilot Vehicle System |
Advisor: |
黃政吉
Huang, Jeng-Ji |
Committee: |
馮輝文
Ferng, Huei-Wen 熊大為 Shiung, David 黃政吉 Huang, Jeng-Ji |
Approval Date: | 2023/06/13 |
Degree: |
碩士 Master |
Department: |
電機工程學系 Department of Electrical Engineering |
Thesis Publication Year: | 2023 |
Academic Year: | 111 |
Language: | 中文 |
Number of pages: | 48 |
Keywords (in Chinese): | 自動駕駛系統 、支持向量機 、機器學習 、序列最小優化 |
Keywords (in English): | automated driving system (ADS), support vector machine (SVM), machine-learning, sequential minimal optimization (SMO) |
DOI URL: | http://doi.org/10.6345/NTNU202301077 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 136 Downloads: 13 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
遠端駕駛是一種嚴重依賴遠程操作員與車輛自動駕駛系統 之間可靠通信鏈來運作的系統。雖然變道和加速/減速等細節的操作(低級動作)由 ADS 執行,但路線規劃(高級指令)是通過使用從沿路的攝像頭或傳感器收集的信息來遠程完成的。在論文中,討論了支持向量機的理論,它在中有著核心的作用。作為一種基於機器學習的技術, 必須經過訓練才能用於執行分類任務。因此,我們將說明如何在中找到優化的支持超平面的推導,包括如何使用序列最小優化。
A tele-operated vehicle is a system relying heavily on a reliable communication link between a remote operator and an automated driving system (ADS) at a vehicle. While detailed maneuvers (low level actions) such as lane changes and accelerations/decelerations are performed by the ADS, route planning ( high level instructions) is remotely done by using gathered information from cameras or sensors along the road. In the thesis, the theory of the support vector machine (SVM) is discussed, which plays a central role in an ADS. As a machine-learning based technique, a SVM has to be trained before it can be used to do classification tasks. Therefore, the derivations of how an optimized supporting hyperplane in SVM can be found are illustrated, including the use of the sequential minimal optimization (SMO).
[1] A. Aslam, F. Santos, and L. Almeida, “Reconfiguring TDMA Communications for Dynamic Formation of Vehicle Platoons,” IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),pp.1713–1714,Oct.2020.
[2] C. Wissing, T. Nattermann, K.-H. Glander, C. Hass, T. Bertram, Lane change prediction by combining movement and situation based probabilities, IFACPapersOnLine 50 (1) (2017) 3554–3559, doi:10.1016/j.ifacol.2017.08.960. 20th IFAC World Congress
[3] F. Chucholowski, S. Büchner, J. Reicheneder, and M. Lienkamp, “Prediction methods for teleoperated road vehicles,” in Conference on Future Automotive Technology - Focus Electromobility, Garching. Bayern Innovativ GmbH, 01 2013.
[4] C. Lienke, C. Wissing, M. Keller, T. Nattermann and T. Bertram, "Predictive Driving: Fusing Prediction and Planning for Automated Highway Driving," in IEEE Transactions on Intelligent Vehicles, vol. 4, no. 3, pp. 456-467, Sept. 2019, doi: 10.1109/TIV.2019.2919477.
[5] L. Jian and C. Gao, "Binary Coding SVMs for the Multiclass Problem of Blast Furnace System," in IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3846-3856, Sept. 2013, doi: 10.1109/TIE.2012.2206336.
[6] Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin. "A practical guide to support vector classification." (2003): 1396-1400.
[7] R. R. Prasojoe and S. Setyorini, "SVM Parallel Concept Test with SMO Decomposition on Cancer Microarray Dataset," 2021 9th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 2021, pp. 467-471, doi: 10.1109/ICoICT52021.2021.9527411.
[8] J.C.Platt, Sequential minimal optimization: a fast algorithm for training support vector machines. 1998, S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy, Improvements to platt’s SMO algorithm for svm classifier design, Neural Computing 13(2001)637–649.
[9] M. Codreanu, M. Juntti and M. Latva-aho, "On the Dual Decomposition Based Sum Capacity Maximization for Vector Broadcast Channels," 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2006, pp. 468-472, doi: 10.1109/ACSSC.2006.354791.
[10] Cai Zhili and Jiang Guiyan, "Application of multiple SVM classifier fusion technique in freeway automatic incident detection," 2008 27th Chinese Control Conference, Kunming, China, 2008, pp. 581-585, doi: 10.1109/CHICC.2008.460568