簡易檢索 / 詳目顯示

研究生: 曾鋆生
論文名稱: 石油工業廢觸媒作為波索蘭材料之可行性研究
指導教授: 許貫中
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
中文關鍵詞: 廢觸媒波索蘭
論文種類: 學術論文
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著經濟和科技的持續發展,愈來愈多的工業廢棄物伴隨而生,台灣地區每年約產生3000噸廢觸媒,為了避免環境遭受廢棄物污染,本研究著重於廢觸媒的再生利用,評估廢觸媒作為混凝土中礦物摻料的可行性。實驗所採用的廢棄物來自於石油裂解廠的廢觸媒(EPcat、Ecat),主要由Al2O3及SiO2所組成且具有部份非結晶相和波索蘭材料之特性,EPcat 的平均粒徑為1.7μm、比表面積為47 m2/g,而Ecat的平均粒徑為69.8μm、比表面積為114 m2/g。研究的方法主要分為二部份,第一部份以波索蘭活性試驗(PAI)及藉由DSC測量CH消耗量來評估廢觸媒的波索蘭活性,探討廢觸媒對水泥漿或砂漿的抗壓強度與凝結時間的影響,並利用XRD、DSC、SEM等儀器來分析廢觸媒對波索蘭反應的影響;第二部份針對Ecat進行熱處理,在不同燒結溫度、時間下找出較佳操作條件來提昇其波索蘭活性。實驗結果顯示EPcat、矽灰比高嶺土、Ecat具有較高的波索蘭活性指數,且其砂漿的抗壓強度均較高;由XRD和DSC圖譜中可明顯看出 EPcat會消耗CH進行波索蘭反應;在SEM照片中可觀察到不同水化產物,如C-S-H膠體、鈣釩石、單硫鋁酸鈣等;水泥漿的凝結時間會因添加EPcat 加速水泥的水化反應而縮短;Ecat在600~800℃溫燒結1小時並加以研磨後,可顯著增加波索蘭活性,因此廢觸媒應可作為混凝土中的礦物摻料。 As the economy and technology continue to grow, more and more industrial wastes will be generated. In Taiwan, over 3,000 tons of spent FCC (fluidized catalytic cracking) catalysts were produced from petroleum refining companies every year. In order to protect our environment from been polluted by these wastes, this study focuses on the reuse of spent FCC catalysts (EPcat, Ecat). Namely, these catalysts were evaluated as mineral admixtures of concrete. Both catalysts consist mainly of aluminum oxide and silicon oxide, and show some amorphous nature and pozzolanic properties. EPcat has an average particle size of 1.7μm and a specific surface area of 47m2/g. Ecat has an average particle size of 69.8μm and a specific surface area of 114 m2/g. Experimentally, the pozzolanic activity of these catalysts was examined by the pozzolanic activity index (PAI) test and the consumption of CH determined by DSC measurements. The effects of catalysts on the compressive strength of mortars and setting time of cement pastes were examined. The pozzolanic activity of these materials was also analyzed by XRD, DSC and SEM. Besides, Ecat was calcined at different temperatures and time so that its pozzolanic activity could be improved. Test results indicate that EPcat, like silica fume, shows higher pozzolanic activity than metakaolin and Ecat. It can increase the compressive strength of the resulting mortars. From the analysis of XRD and DSC, we have found that EPcat can undergo the pozzolanic reaction by consuming CH. We also have observed various hydrated products such as C-S-H, ettringite and monosulfoaluminate in the EPcat pastes from SEM micrographs. The pastes incorporated with EPcat exhibit shorter setting time because the catalyst can accelerate the cement hydration by undergoing the pozzolanic reaction. The pozzolanic activity of Ecat could be enhanced significantly when this catalyst was heat treated at 600~800℃ for 1 hr and then ball-milled. Therefore, spent FCC could be potentially used as mineral admixtures of concrete.

    As the economy and technology continue to grow, more and more industrial
    wastes will be generated. In Taiwan, over 3,000 tons of spent FCC (fluidized
    catalytic cracking) catalysts were produced from petroleum refining companies
    every year. In order to protect our environment from been polluted by these
    wastes, this study focuses on the reuse of spent FCC catalysts (EPcat, Ecat).
    Namely, these catalysts were evaluated as mineral admixtures of concrete.
    Both catalysts consist mainly of aluminum oxide and silicon oxide, and show
    some amorphous nature and pozzolanic properties. EPcat has an average particle
    size of 1.7μm and a specific surface area of 47m2/g. Ecat has an average
    particle size of 69.8μm and a specific surface area of 114 m2/g.
    Experimentally, the pozzolanic activity of these catalysts was examined by the
    pozzolanic activity index (PAI) test and the consumption of CH determined by
    DSC measurements. The effects of catalysts on the compressive strength of
    mortars and setting time of cement pastes were examined. The pozzolanic
    activity of these materials was also analyzed by XRD, DSC and SEM. Besides,
    Ecat was calcined at different temperatures and time so that its pozzolanic
    activity could be improved.
    Test results indicate that EPcat, like silica fume, shows higher pozzolanic
    activity than metakaolin and Ecat. It can increase the compressive strength of
    the resulting mortars. From the analysis of XRD and DSC, we have found that
    EPcat can undergo the pozzolanic reaction by consuming CH. We also have
    observed various hydrated products such as C-S-H, ettringite and
    monosulfoaluminate in the EPcat pastes from SEM micrographs. The pastes
    incorporated with EPcat exhibit shorter setting time because the catalyst can
    accelerate the cement hydration by undergoing the pozzolanic reaction. The
    pozzolanic activity of Ecat could be enhanced significantly when this catalyst
    was heat treated at 600~800℃ for 1 hr and then ball-milled. Therefore, spent
    FCC could be potentially used as mineral admixtures of concrete.

    第一章緒論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3  1-1 研究背景‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3  1-2 研究目的‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧4 第二章 文獻回顧 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧5  2-1 波索蘭材料‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧5    2-1-1 波索蘭材料之特性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧6    2-1-2 波索蘭反應‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧6  2-2 廢觸媒‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧7    2-2-1 沸石之特性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧7    2-2-2 沸石觸媒之應用‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧8    2-2-3 廢觸媒之形成‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧9    2-2-4 現有廢觸媒資源化技術‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧11    2-2-5 天然沸石水泥的作用機理‧‧‧‧‧‧‧‧‧‧‧‧‧‧17  2-3 矽灰‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧18    2-3-1 矽灰之生成‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧18    2-3-2 矽灰的作用機理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧18    2-3-3 矽灰的應用‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧19  2-4 高嶺土‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧21    2-4-1 高嶺土之特性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧21    2-4-2 高嶺土之用途‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧21 第三章 研究計畫與實驗方法 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 23  3-1 實驗流程‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧23  3-2 實驗方法‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧23  3-3 實驗變數‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧26  3-4 實驗材料‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧26  3-5 實驗儀器‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧27  3-6 試驗方法‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧28    3-6-1 水泥砂漿抗壓強度試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧28    3-6-2 水泥砂漿流度試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧29    3-6-3 礦物摻料波索蘭活性試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧29    3-6-4 凝結時間試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧30    3-6-5 粒徑分析試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧30    3-6-6 比表面積試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧30    3-6-7 X光繞射分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧31    3-6-8 掃瞄式電子顯微鏡之觀測‧‧‧‧‧‧‧‧‧‧‧‧‧‧31    3-6-9 差式熱掃瞄分析試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧32    3-6-10 Ecat熱處理 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧32 第四章 結果與討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 33  4-1 材料基本特性分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧33  4-2 礦物摻料的波索蘭活性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧43  4-3 水泥漿凝結時間‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧44  4-4 水泥砂漿流度‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧46  4-5 水泥砂漿抗壓強度‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧50  4-6 差式熱掃瞄分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧65  4-7 X-光繞射分析 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧74  4-8 SEM分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧78  4-9 Ecat之熱處理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧80    4-9-1 Ecat抗壓強度‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧80    4-9-2 熱處理對Ecat物性的改變‧‧‧‧‧‧‧‧‧‧‧‧‧‧81    4-9-3 決定最佳溫度‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧84    4-9-4 Ecat粒徑的影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧86 第五章 結論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧89 第六章 參考資料 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧91

    1.徐文慶、張蕙蘭、廖錦聰,“廢棄物之陶瓷製品利用”,陶業,pp.20-32,1996.
    2.黃兆龍,「混凝土性質與行為」,詹氏書局,1997.
    3.林炳炎,「飛灰、矽灰、高爐爐石用在混凝土中」,三民書局,1993.
    4.莊文壽,“波索蘭礦質粉料之特性”,環境工程月刊,第六卷,第四期,pp.78-85
    ,1995.
    5.J. Buekett,“International Admixtures Standards”, Cement Concrete Research,
    Vol.20, pp.137-140, 1990.
    6.G. Baronio, L. Binda, “Study of the pozzolanicity of some bricks and clays
    ”, Construction and Building Materials, Vol. 11, No.1, pp. 41-46, 1997.
    7.H. Biricik, F. Akőz, İ. Berktay, A. N. Tulgar, “Study of
    pozzolanic properties of wheat straw ash”, Cement Concrete Research, Vol. 29,
    No.5, pp. 637-643, 1999.
    8.E. Liebig, E. Althaus, “Pozzolanic activity of volcanic tuff and suevite:
    effects of calcination” Cement Concrete Research, Vol. 28, No. 4, pp. 567-
    575, 1998.
    9.N. Ay, M. Ünal, “The use of waste ceramic tile in cement production”,
    Cement Concrete Research, Vol. 30, No.3,  pp. 497-499, 2000.
    10.李定粵,「觸媒的原理與應用」,正中書局,1991.
    11.胡興中,「觸媒原理與應用」,高立書局,1998.
    12.陳宗輝,“石油工業廢觸媒資源化之研究”,國立雲林科技大學環境與安全工程系碩士
    論文,1999.
    13.E. Furimsky,“Review spent refinery catalysts: environment, safety and
    utilization”, Catalysis Today, pp.223~286, 1996.
    14.W. C. Hsu, “Utilization of the ceramic products made from wastes”,
    Ceramics, Vol.15, No.1, pp.20-35, 1996.
    15.林志棟等,“ROC廢觸媒在瀝青混凝土之利用”,第五屆工業減廢技術與策略研討會論
    文集,1995.
    16.廖錦聰、張蕙蘭,“ROC/FCC廢觸媒之在利用實例”,化工技術第九卷,第一期,pp.
    138-145,2001.
    17.M. I. S. de Rojas, M. Frías, “The pozzolanic activity of different
    materials, its influence on the hydration heat in mortars”, Cement Concrete
    Research, Vol.26, No.2, pp.203-213, 1996.
    18.P. C. Aitcin, “ High-Performance Concrete”, E & FN SPON, New York, 1998.
    19.方鴻源、蘇南、陳宗輝、施明倫,“石油工業廢觸媒資源化之研究”,第十四屆廢棄物
    處理技術研討會論文集,pp.74-80,1999.
    20.F. Curcio, B. A. DeAngelis, S. Pagliolico, “Metakaolin as a pozzolanic
    microfiller for high-performance mortars, Cement Concrete Research, Vol.28, No.
    6, pp.803-809, 1998.
    21.M. Oriol and J. Pera, “Pozzolanic activity of metakaolin under microwave
    treatment”, Cement Concrete Research, Vol. 25, No. 2, pp. 265-270, 1995.
    22.B. Pacewska, I. Wilinska, J. Kubissa, “Use of spent catalyst from
    catalytic cracking in fluidized bed as a new concrete additive”, Thermochimica
    Acta, Vol.322, No.2, pp.175-181, 1998.
    23.J. Paya, J. Monzo, M. V. Borrachero, “Fluid catalytic cracking reside (
    F3CR): An excellent mineral by-product for improving early-strength development
    of cement mixtures”, Cement Concrete Research Vol.29, No.11, pp.1773-1779,
    1999.
    24.J. Paya, J. Monzo, M. V. Borrachero, “Physical, chemical and mechanical
    properties of fluid catalytic cracking reside (F3CR) cements”, Cement and
    Concrete Research, Vol.31, No.1, pp.57-61, 2001.
    25.N. Su, Z. H. Chen, H. Y. Fang, “Reuse of spent catalysts as fine aggregate
    in cement mortar”, Cement Concrete Composites, Vol.23, No.1, pp.111-118, 2001.
    26.Y. S. Tseng, H. L. Chen, and K. C. Hsu, “the characteristics and
    pozzolanic activity of waste catalysts from oil company”, Proceeding of the
    8th East Asia-Pacific Conference on Structural Engineering & Construction,
    Singapore, 2001.
    27.K. C. Hsu, Y. S. Tseng, F. F. Ku, N. Su,“Oil cracking waste catalyst as an
    active pozzolanic material for superplasticized mortars”, Cement Concrete
    Research, (in press).
    28.古晏菁,“廢觸媒資源化技術介紹與評析”,環保資訊,pp.29-36,1999.
    29.馮乃謙,「天然沸石混凝土應用技術」,中國鐵道出版社,1996.
    30.S. Wild, B. B. Sabir, J. M. Khatib, “ Factors influencing strength
    development of concrete containing silica fume”, Cement Concrete Research,
    Vol. 25, No. 7, pp. 1567-1580, 1995.
    31.D. R. G. Mitchell, I. Hinczak, R. A. Day, “ Interaction of silica fume
    with calcium hydroxide solutions and hydrated cement pastes”, Cement Concrete
    Research, Vol. 28, No. 11, pp. 1571-1584, 1998.
    32.H. A. Toutanji, T. El-Korchi, “The influence of silica fume on the
    compressive strength of cement paste and mortar”, Cement Concrete Research,
    Vol. 25, No. 7, pp. 1591-1602, 1995.
    33.許貫中、蘇南,“矽灰與高嶺土高性能混凝土之研究”,國產實業建設公司委託專題計
    畫報告,2000.
    34.M. A. Caldarone, K. A. Gruber, “High reactivity metakaolin (HRM) for high
    performance concrete”, Conference on Fly Ash, Silica Fume, Slag and Natural
    Pozzolans in Concrete, Milwaukee, WI, Vol.2, pp.815-827, 1995.
    35.M. H. Zhang, V. M. Malhotra, “Characteristics of a thermally activated
    alumino-silicate pozzolanic material and its use in concrete”, Cement
    Concrete Research, Vol. 25, No.8, pp. 1713-1725, 1995.
    36.S. Wild, J. M. Khatib, A. Jones, “Relative strength, pozzolanic activity
    and cement hydration in superplasticized metakaolin concrete” Cement Concrete
    Research, Vol. 26, No.10, pp.1537-1544, 1996.
    37.W. Sha, G. B. Pereira, “Differential scanning calorimetry study of
    ordinary Portland cement paste containing metakaolin and theoretical approach
    of metakaolin activity” Cement Concrete Composites, Vol. 23, pp. 455-461,
    2001.
    38.N. Su, H. Y. Fang, Z. H. Chen, F. S. Liu, “Reuse of waste catalysts from
    petrochemical industries for cement substitution”, Cement  Concrete
    Research, Vol.30, No.11, pp.1773-1783, 2000.
    39.V. M. Malhotra, “Condensed silica fume”, Boca Raton, Florida, CRC press,
    1987.
    40.莊文壽,“波索蘭摻料在水泥固化上的應用研究”,台電核能月刊,第150期,pp.16-
    38,1995.
    41.黃兆龍、彭添富、林利國,“稻殼灰燃燒溫度對波索蘭反應性質之影響”,中國土木水
    利工程學刊,第二卷,第三期,pp.263-272,1990.
    42.陳慶宏,“強塑劑於高性能混凝土中之效能評估”,國立台灣師範大學化學研究所碩士
    論文,2000.
    43.N. B. Singh, R. Sarvahi, N. P. Singh, “Effect of superplasticizers on the
    hydration of cement”, Cement Concrete Research, Vol.22, pp.725-735, 1992.
    44.J. Y. Li, P. Tian, “Effect of slag and silica fume on mechanical
    properties of high strength concrete”, Cement Concrete Research, Vol.27, No.
    6, pp.833-837, 1997.
    45.B. E. I. Abdelrazig, S. D. Main, D. V. Nowell, “Hydration studies of
    modified OPC pastes by differential scanning calorimetry and thermogravimetry
    ”, Journal of Thermal Analysis, Vol.38, No.3, pp.495-504, 1992.
    46.W. Sha, E. A. O’Neill and A. Guo, “differential scanning calorimetry
    study of ordinary Portland cement”, Cement Concrete Research, Vol. 29, No. 9,
    pp. 1487-1489, 1999.
    47.S. Wild, J. K. Khatib, “Portlandite consumption in metakaolin cement
    pastes and mortars”, Cement Concrete Research, Vol.27, No.1, pp.137-146, 1997.
    48.R. Yang, “Crystallinity determination of pure phases used as standards for
    QXDA in cement chemistry”, Cement Concrete Research, Vol.26, No.9, pp.1451-
    1461, 1996.
    49.B. A. Clark, P. W. Brown, “The formation of calcium sulfoaluminate hydrate
    compounds”,PartⅡ, Cement Concrete Research, Vol.30, No.2, pp. 233-240, 2000.
    50.H. Motzet, H. Pöllmann, “Synthesis and characterization of sulfite-
    containing Afm phases in the system CaO-Al2O3-SO2-H2O” Cement Concrete
    Research, Vol.29, No.7, pp.1005-1011, 1999.
    51.張祖恩、蔣立中、施百鴻、蘇俊賓,“焚化底渣在利用作為水泥原料之可行性研究”,
    第十五屆廢棄物處理技術研討會論文集,pp.83-90,2000.
    52.潘時正、劉澤融、曾迪華,“工業廢水污泥灰渣再利用於水泥砂漿之研究”,第十五屆
    廢棄物處理技術研討會論文集,pp.192-198,2000.
    53.C. He, E. Makovicky, B. Osbaeck, “Thermal treatment and pozzolanic
    activity of sepiolite”, Applied Clay Science, Vol.10, pp.337-349, 1996.

    無法下載圖示
    QR CODE