研究生: |
呂依旻 |
---|---|
論文名稱: |
左旋噻咪唑在外消旋二級醇動力學分割反應之探討與4-二甲基胺基吡啶衍生之新有機催化劑的開發 (−)-Tetramisole in Kinetic Resolution of Racemic Secondary Alcohols and Synthesis of New Organocatalyst Derived 4-(Dimethylamino)pyridine |
指導教授: | 陳焜銘 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 30 |
中文關鍵詞: | 動力學分割 、4-二甲基胺基吡啶 、有機催化劑 、外消旋二級醇 |
英文關鍵詞: | kinetic resolution, 4-(dimethylamino)pyridine, organocatalyst, racemic secondary alcohols |
論文種類: | 學術論文 |
相關次數: | 點閱:141 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
掌性2-羥基羧酸酯分子結構,常見於藥物分子及生物活性分子,過去有許多關於二級醇之動力學光學分割的文獻研究,但以2-羥基羧酸酯為起始物的相關探討,卻是付之闕如。本論文探討使用外消旋2-羥基羧酸酯為起始物,以便宜又容易獲得的左旋噻咪唑為光學分割劑(10 mol%)、甲苯為溶劑,添加1.0當量的三乙基胺,以0.6當量的異丁酸酐為醯化試劑,在-75 oC與濃度0.05M的條件下,與2-羥基羧酸酯進行動力學光學分割二級醇反應,得到較好的產率及鏡像超越值。利用之前得到高鏡像選擇性之R-form 2-羥基羧酸酯,經由HPLC圖譜分析,確定本研究回收之起始物是以S-form為主,醯化產物則是以R-form為主。
另一方面,4-二甲基胺基吡啶衍生催化劑,在外消旋二級醇之動力學光學分割的應用上,有不錯的成果,本研究嘗試修飾已知的催化劑結構,合成具4-二甲基胺基吡啶結構之新有機催化劑,目前的合成策略雖可得到催化劑93,但產率不如預期,期望未來發展新合成策略,提升合成步驟的總產率,得到預期的新有機催化劑。
Chiral 2-hydroxyalkanoates are frequently important core structures in biologically active and pharmaceutical compounds. Several publications about kinetic
resolution of racemic secondary alcohols were reported, but rare case used 2-hydroxyalkanoates as the starting materials. In this thesis, the reaction was carried
out using 2-hydroxyalkanoates 76a (0.05 M) and isobutyric anhydride (0.6 equiv) as starting materials in toluene under -75 oC in the presense of triethylamine (1.0 equiv)
and (−)-tetramisole (10 mol%) as a catalyst. The absolute stereochemistry of the recovered alcohol and acylated product were determined by the comparison with the
HPLC and X-ray analyses which were studied in our group.
In addition, chiral 4-(dimethylamino)pyridine derivatives have been used as efficient catalysts in kinetic resolution of secondary alcohols. Design and synthesis of new organocatalyst by insertion of 4-(dimethylamino)pyridine moiety into known catalyst is an important work. In this study, a new 4-(dimethylamino)pyridine derived
catalyst 93 was synthesized successfully but in low chemical yield. Further modification of synthetic strategy to improve the result is underway in our group.
1. MOSS, G. P. Pure Appl. Chem. 1996, 68, 2193.
2. Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, 249.
3. Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, 5.
4. Bredig, G.; Fajans, K. Ber. Dtsch. Chem. Ges. 1908, 41, 752.
Fajans, K. Z. Phys. Chem. 1910, 73, 25.
5. Pasteur, L. C. R. Hebd. Séance Acad. Sci. Paris 1848, 26, 535.
6. Marckwald, W.; McKenzie, A. Chem. Ber. 1899, 32B, 2130.
7. Einhorn, A.; Hollandt, F. Annulen, 1898, 301, 95.
8. Vedejs, E.; Diver, S. T. J. Am. Chem. Soc. 1993, 115, 3358.
9. Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1996, 118, 1809.
10. Miller, S. J.; Copeland, G. T.; Papaioannou, N.; Horstmann, T. E.; Ruel, E. M. J. Am. Chem. Soc. 1998, 120, 1629.
11. Oriyama, T.; Hori, Y.; Imai, K.; Sasaki, R. Tetrahedron Lett. 1996, 37, 8543.
12. Suzuki, Y.; Yamauchi, K.; Muramatsu, K.; Sato, M. Chem. Commun. 2004, 2770.
13. Birman, V. B.; Uffman, E. W.; Jiang, H.; Li, X.; Kilbane, C. J. J. Am. Chem. Soc. 2004, 126, 12226.
14. Wegler, R. Justus Liebig's Annalen Der Chemie 1932, 498, 62.
15. Wynberg, H. Top. Stereochem. 1986, 16, 87.
16. Spivey, A. C.; Maddaford, A.; Redgrave, A. J. Org. Prep. Proced. Int. 2000, 32, 333.
17. Vedejs, E.; Daugulis, O.; Diver, S. T. J. Org. Chem. 1996, 61, 430.
18. Vedejs, E.; Daugulis, O. J. Am. Chem. Soc. 1999, 121, 5813.
19. Ruble, J. C.; Fu, G. C. J. Org. Chem. 1996, 61, 7230.
20. Fu, G. C. Acc. Chem. Res. 2000, 33, 412.
21. Kawabata, T.; Nagato, M.; Takasu, K.; Fuji, K. J. Am. Chem. Soc. 1997, 119, 3169.
22. Spivey, A. C.; Fekner, T.; Adams, H. Tetrahedron Lett. 1998, 39, 8919.
23. Spivey, A. C.; Fekner, T.; Spey, S. E.; Adams, H. J. Org. Chem. 1999, 64, 9430.
24. Spivey, A. C.; Fekner, T. S.; Spey, S. E. J. Org. Chem. 2000, 65, 3154.
25. Sano, T.; Imai, K.; Ohashi, K.; Oriyama, T. Chem. Lett. 1999, 265.
26. Kano, T.; Sasaki, K.; Maruoka, K. Org. Lett. 2005, 7, 1347.
27. Birman, V.; Li, B. X. Org. Lett. 2006, 8, 1351.
28. Li, X.; Jiang, H.; Uffman, E. W.; Guo, L.; Zhang, Y.; Yang, X.; Birman, V. B. J. Org. Chem. 2012, 77, 1722.
29. Birman, V. B.; Jiang, H.; Li, X. Org. Lett. 2007, 9, 3237.
30. Birman, V. B.; Jiang, H.; Li, X.; Guo, L.; Uffman, E. W. J. Am. Chem. Soc. 2006, 128, 6536.
31. Sheppard, C. I.; Taylor, J. L.; Wiskur, S. L. Org. Lett. 2011, 13, 3794.
32. Shiina, I.; Nakata, K.; Ono, K.; Sugimoto, M.; Sekiguchi, A Chem. Eur. J. 2010, 16, 167.
33. Deb, I.; Dadwal, M.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett. 2006, 8, 1201.
34. Reddy, R. J.; Lee, P.-H.; Magar, D. R.; Chen, J.-H.; Chen, K. Eur. J. Org. Chem. 2012, 353.
35. 王文毓,國立台灣師範大學化學系碩士論文,2010
36. Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 794.
37. Taylor, S. J.; Morken, J. P. Science 1998, 280, 267.
38. Wagaw, S.; Buchwald, S. L J. Org. Chem. 1996, 61, 7240.