簡易檢索 / 詳目顯示

研究生: 劉昭吟
Liu, Chao Yin
論文名稱: 菸鹼酸鉻增補對自由車選手耐力運動後期衝刺表現之影響
Effect of niacin-bound chromium supplement on sprint performance following endurance exercise in cyclists
指導教授: 王鶴森
Wang, Ho Seng
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 53
中文關鍵詞: 公路賽碳水化合物最大動力輸出衰竭運動溫蓋特無氧動力測驗
英文關鍵詞: road cycling, carbohydrate, peak power output, exhaustion exercise, Wingate anaerobic power test
論文種類: 學術論文
相關次數: 點閱:126下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討菸鹼酸鉻增補對自由車選手90分鐘耐力運動後衝刺表現的影響。方法:受試者為10名男性受過訓練的自由車選手,每位受試者皆會在Cyclus2固定式腳踏車測功儀上先進行一次最大攝氧量測量,再以雙盲、平衡次序方式進行三次運動測驗。運動測驗係以70%最大攝氧量騎乘90分鐘,隨即進行30秒溫蓋特無氧動力測驗,每次運動測驗都至少間隔一週,運動測驗過程中隨機給予受試者每公斤體重0.2克碳水化合物 (CHO) 或碳水化合物添加200微克的菸鹼酸鉻 (CHOCr) 或安慰劑添加於飲用水中,增補時間分別為運動測驗開始及運動測驗第20、40、60、80分鐘。另外,在安靜時、運動測驗第15、75分鐘及運動測驗後3分鐘分別由指尖採血測量血乳酸及血糖。實驗參數包含平均動力輸出、最大動力輸出、到達最大動力輸出時間、疲勞遞減率、自覺努力程度 (RPE)、血糖及血乳酸等。結果:在最大動力輸出部份,三組之間皆達顯著差異,依序為CHOCr組 (746.04±90.32 W) > CHO組 (721.63±75.35 W) > 安慰劑組 (674.13±94.79W) (p <.05),但在平均動力輸出部份,僅CHOCr組 (631.39±41.73 W) 顯著高於安慰劑組(583.02±53.51 W) (p <.05);另外,CHOCr組與CHO組在運動測驗中之RPE皆顯著低於安慰劑組 (p <.05);同時,CHO組之血糖亦顯著高於安慰劑組 (p <.05),而CHOCr組與安慰劑組則無顯著差異。結論:在自由車耐力運動過程中,增補碳水化合物加NBC,可以降低疲勞感,同時會有較佳的血糖利用,有助於運動最後階段的衝刺表現。

    Purpose: The purpose of this study was to investigate the effect of niacin-bound chromium (NBC) supplement on sprint performance following 90 min of endurance exercise in cyclists. Methods: Ten trained cyclist participated in three exercise trials on Cyclus2 stationary ergometer. Each exercise trial was performed at least one week apart. Following a double-blind, crossover design, the subjects cycled at 70% O2max for 90 minutes and then immediately performed 30s Wingate Anaerobic Power Test (WAPT) to measure mean power, peak power, time to peak power, fatigue index, RPE. Subjects received supplement 0.2g/kg carbohydrate beverage (CHO trial), a CE beverage containing 200µg NBC (CHOCr trial), or placebo (PLAC trial) at 0, 20, 40, 60 and 80 min during each exercise trial. Blood glucose and lactate concentrations were determined from finger blood at resting, 15, 75 min during exercise, and at 3 min post-WAPT. Result: Peak power was significantly different between trials, CHOCr trial (746.04 ± 90.32 W) > CHO trial (721.63 ± 75.35 W) > placebo trial (674.13±94.79 W) (p <.05), but only CHOCr trial (631.39±41.73 W) significantly higher than placebo trial (583.02 ± 53.51 W) in mean power (p <.05). RPE was significantly lower in CHOCr trial and CHO trial than placebo trial (p <.05). Blood glucose was significantly higher in CHO trial than placebo trial (p <.05). Conclusion: NBC combined with carbohydrate supplement may attenuate mental fatigue, and even improve blood glucose utilization and sprint performance following endurance exercise in cyclists.

    中文摘要 ………………………………………………………………………………… i 英文摘要 ………………………………………………………………………………… ii 謝 誌 ………………………………………………………………………………… iii 目 次 ………………………………………………………………………………… iv 表 次 ………………………………………………………………………………… vi 圖 次 ………………………………………………………………………………… vi 第壹章、緒論 一、問題背景 …………………………………………………………………………… 1 二、研究目的 …………………………………………………………………………… 3 三、研究假設 …………………………………………………………………………… 3 四、名詞操作性定義 …………………………………………………………………… 3 五、研究限制 …………………………………………………………………………… 4 第貳章、文獻探討 一、鉻的生理作用 ……………………………………………………………………… 5 二、碳水化合物及鉻增補對運動表現的影響 ………………………………………… 7 三、本章總結 …………………………………………………………………………… 12 第參章、方法與步驟 一、受試者 ……………………………………………………………………………… 13 二、實驗時間與地點 …………………………………………………………………… 13 三、實驗方法與步驟 …………………………………………………………………… 14 四、資料處理 …………………………………………………………………………… 18 第肆章、結果 一、運動測驗之衝刺表現 ……………………………………………………………… 20 二、生理及血液生化反應 ……………………………………………………………… 22 第伍章、結論與建議 一、運動表現 …………………………………………………………………………… 27 二、生理及血液生化反應 ……………………………………………………………… 28 三、結論 ………………………………………………………………………………… 30 四、建議 ………………………………………………………………………………… 30 引用文獻 ……………………………………………………………………………… 32 附錄一 受試者需知與同意書………………………………………………………… 38 附錄二 身體活動問卷調查表………………………………………………………… 41 附錄三 不同增補條件之自覺努力程度……………………………………………… 42 附錄四 不同增補條件對平均動力輸出影響之變異數分析摘要表………………… 42 附錄五 不同增補條件對最大動力輸出影響之變異數分析摘要表………………… 42 附錄六 不同增補條件對到達最大動力輸出時間影響之變異數分析摘要表……… 42 附錄七 不同增補條件對疲勞遞減率影響之變異數分析摘要表…………………… 43 附錄八 不同增補條件與採血時間對自覺努力程度影響之變異數分析摘要表…… 43 附錄九 不同增補條件對自覺努力程度影響之事後比較…………………………… 43 附錄十 時間點對自覺努力程度影響之事後比較…………………………………… 44 附錄十一 (圖)不同採血點之血乳酸濃度…………………………………………… 44 附錄十二 不同增補條件與採血時間對血乳酸濃度影響之變異數分析摘要表……… 45 附錄十三 不同增補條件與血乳酸濃度影響之變事後比較…………………………… 45 附錄十四 不同採血時間對血乳酸濃度影響之事後比較……………………………… 45 附錄十五 (圖)不同採血點之血糖濃度……………………………………………… 46 附錄十六 不同增補條件與採血時間對血糖濃度影響之變異數分析摘要表………… 46 附錄十七 不同增補條件對血糖濃度影響之事後比較………………………………… 47 附錄十八 不同採血時間對血糖濃度影響之事後比較………………………………… 47 附錄十九 (圖)不同增補條件下運動測驗之呼吸交換率變化…………………… 48 附錄二十 不同增補條件及時間對呼吸交換率影響之變異數分析摘要表………… 48 附錄二十一 不同增補條件對呼吸交換率影響之事後比較…………………………… 48 附錄二十二 不同時間對呼吸交換率影響之事後比較………………………………… 49 附錄二十三 (圖)不同增補條件下運動測驗之耗氧量變化………………………… 49 附錄二十四 不同增補條件及時間對耗氧量影響之事後比較………………………… 50 附錄二十五 不同增補條件對耗氧量影響之事後比較………………………………… 50 附錄二十六 不同時間對耗氧量影響之事後比較……………………………………… 50 附錄二十七 (圖)不同增補條件下運動測驗之換氣量變化………………………… 51 附錄二十八 不同增補條件及時間對換氣量影響之變異數分析摘要表……………… 51 附錄二十九 不同增補條件對換氣量影響之事後比較………………………………… 51 附錄三十 不同時間對換氣量影響之事後比較……………………………………… 52 附錄三十一 (圖)不同增補條件下運動測驗之心跳率變化………………………… 52 附錄三十二 不同增補條件及時間對心跳率影響之變異數分析摘要表 ……………… 53 附錄三十三 不同增補條件對心跳率影響之事後比較………………………………… 53 附錄三十四 不同時間對心跳率影響之事後比較……………………………………… 53 表 次 表 1 長期鉻增補對運動表現的影響 …………………………………………………… 11 表2 不同增補條件之血乳酸濃度 ……………………………………………………… 22 表3 不同增補條件之血糖濃度 ………………………………………………………… 23 表4 不同增補條件之呼吸交換率 ……………………………………………………… 24 表5 不同增補條件之耗氧量 …………………………………………………………… 25 表6 不同增補條件之換氣量 …………………………………………………………… 25 表7 不同增補條件之心跳率 …………………………………………………………… 26 圖 次 圖 1 鉻對胰島素作用的影響 …………………………………………………………… 6 圖 2 實驗流程圖 ………………………………………………………………………… 14 圖 3 運動測驗及採血流程圖 …………………………………………………………… 15 圖 4 受試者接受運動測驗之情形 ……………………………………………………… 16 圖 5 不同增補條件下之平均動力輸出 ………………………………………………… 19 圖 6 不同增補條件下之最大動力輸出 ………………………………………………… 20 圖 7 不同增補條件下90分鐘耐力運動之自覺努力程度 ……………………………… 21

    林正常、林貴福、徐台閣、吳慧君(譯)(2000)。運動生理學。台北市:藝軒。
    (Power, S. K., & Howley, E. T., 2001)
    林正常(2005)。運動生理學。臺北市:師大書苑。
    林立山(2010)。氧協同多重菸鹼酸鉻複合物與 U!behi 能量嚼錠對有氧及無氧運動表現的影響, 國立臺灣師範大學,臺北市。
    Amato, P. M., Arlene J., Yen, Samuel S. C. (2000). Effects of chromium picolinate supplementation on insulin sensitivity, serum lipids, and body composition in healthy, nonobese, older men and women. Journal of Gerontology: Medical Sciences, 55(5), 260-263.
    Anderson, R. A. (1997). Nutritional factors influencing the glucose/insulin system: Chromium. Journal of the American College of Nutrition, 16(5), 404-410.
    Anderson, R. A. (1998). Chromium, glucose intolerance and diabetes. Journal of the American College of Nutrition, 17(6), 548-555.
    Balk, E. M., Tatsioni, A., Lau, J., Lichtenatein, A. H., & Pittas, A. G. (2007). Effect of chromium supplementation on glucose metabolism and lipids. Diabetes Care, 30, 2154-2163.
    Borg, G.A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377-381.
    Campbell, W. W., Joseph, L. J., Anderson, R. A., Davey, S. L., Hinton, J., & Evans, W. J. (2002). Effects of resistive training and chromium picolinate on body composition and skeletal muscle size in older women. International Journal of Sport Nutrition and Exercise Metabolism, 12(2), 125-135.
    Campbell, W. W., Joseph, L. J. O., Davey, S. L., Cyr-Campbell, D., Anderson, R. A., & Evans, W. J. (1999). Effects of resistance training and chromium picolinate on body composition and skeletal muscle in older men. Journal of Applied Physiology, 86, 29-39.
    Cefalu, W. T., & Hu, F. B. (2004). Role of chromium in human health and in diabets. Dibetes Care, 27, 2741-2751.
    Cooper, J. A., Anderson, B. F., Buckley, P. D., & Blackwell, L. F. (1984). Structure and biological activity of nitrogen and oxygen coordinated nicotinic acid complexes of chromium. Inorganica Chimica Acta, 91(1), 1-9.
    Crawford, V., Scheckenbach, R., & Preuss, H. G. (1999). Effects of niacin-bound chromium supplementation on body composition in overweight African-American women. Diabetes, Obesity and Metabolism, 1(6), 331-337.
    Davis, J. M., Welsh, R. S., & Alerson, N. A. (2000). Effects of carbohydrate and chromium ingestion during intermittent high-intensity exercise to fatigue. International Journal of Sport Nutrition and Exercise Metabolism, 10, 476-485.
    Davis, M. C., Sumrall, H. K., & Vincent, J. B. (1996). A biologically active form of chromium may activate a membrane phosphotyrosine phosphatase (PTP). Biochemistry, 35, 12963-11296.
    Desbrow, B., Anderson, S., Barrett, J., Rao, E., & Hargreaves, M. (2004). Carbohydrate-electrolyte feedings and 1 h time trial cycling performance. International Journal of Sport Nutrition and Exercise Metabolism, 14, 541–549.
    Diaz, M. L., Watkinsb, B. A., Lib, Y., Anderson, R. A., & Campbell, W. W. (2008). Chromium picolinate and conjugated linoleic acid do not synergistically influence diet- and exercise-induced changes in body composition and health indexes in overweight women. The Journal of Nutritional Biochemistry, 19(1), 61-68.
    DiSilvestro, R. A., & Dya, E. (2007). Comparison of acute absorption of commercially available chromium supplements. Journal of Trace Elements in Medicine and Biology, 21(2), 120-124.
    Evans, G. (1989). The effect of chromium picolinate on insulin controlled parameters in humans. International Journal Biosocial Medicine Research, 11, 163-180.
    Febbraio, M. A., Chiu, A., Angus, D. J., Arkinstall, M. J., & Hawley, J. A. (2000). Effects of carbohydrate ingestion before and during exercise on glucose kinetics and performance. Journal of Applied Physiology, 89, 2220–2226.
    Felig, P., & Wahren, J. (1975). Fuel homeostasis in exercise. The New England Journal of Medicine, 293, 1078-1084.
    Frank, L. L., & Baer, J. T. (2002). The effect of a chromium-containing beverage on sprint cycling performance after a submaximal exercise bout. Medicine and Science in Sports and Exercise, 34, S3.
    Frentsos, J., & Baer, J. (1997). Increased energy and nutrient intake during training and competition improves elite triathletes' endurance performance. International Journal of Sport Nutrition, 7(1), 61-71.
    Garcin, M., Wolff, M., & Bejma, T. (2003). Reliability of rating scales of perceived exertion and heart rate during progressive and maximal constant load exercises till exhaustion in physical education students. International Journal of Sports Medicine, 24, 285-290.
    Grant, K. E., Chandler, R. M., Castle, A. L., & Ivy, J. L. (1997). Chromium and exercise training: effect on obese women. Medicine and Science in Sports and Exercise, 29(8), 992-998.
    Green, J. M., McLester, J. R., Crews, T. R., Wickwire, P. J., Pritchett, R. C., & Lomax, R. G. (2006). RPE association with lactate and heart rate during high-intensity interval cycling. Medicine and Science in Sports and Exercise., 38(1), 167-172.
    Glinsmann, W. H., & Mertz, W. (1966). Effect of trivalent chromium on glucose tolerance. Metabolism, 15(6), 510-520.
    Hallmark, M. A., Reynolds, T. H., DeSouza, C. A., Dotson, C. O., Anderson, R. A., & Rogers, M. A. (1996). Effects of chromium and resistive training on muscle strength and body composition. Medicine and Science in Sports and Exercise, 28(1), 139-144.
    Hasten, D. L., Rome, E. P., Franks, B. D., & Hegsted, M. (1992). Effects of chromium picolinate on beginning weight training students. International Journal of Sport Nutrition and Exercise Metabolism, 2(4), 343-350.
    Hawley, J. A., & Lessard, S. J. (2008). Exercise training-induced improvements in insulin action. Acta Physiol, 192, 127-135.
    Karamanolis, I. A., & Tokmakidis, S. P. (2008). Effects of carbohydrate ingestion 15 min before exercise on endurance running capacity. Applied Physiology, Nutrition, and Metabolism, 33(3), 441-449.
    Karnieli, E., & Armoni, M. (2008). Transcriptional regulation of the insulin-responsive glucose transporter GLUT4 gene: from physiology to pathology. American Journal of Physiology Endocrinology and Metabolism, 295(1), 38-45.
    Livolsi, J. M., Adams, G. M., & Laguna, P. L. (2001). The effect of chromium picolinate on muscular strength and body composition in women athletes. Journal of Strength & Conditioning Research, 15(2), 161-166.
    Lukaski, H. C. (2000). Magnesium, zinc, and chromium nutriture and physical activity. The American Journal of Clinical Nutrition, 72, 585S-593S.
    Lukaski, H. C., Bolonchuk, W. W., Siders, W. A., & Milne, D. B. (1996). Chromium supplementation and resistance training: effects on body composition, strength, and trace element status of men. American Journal of Clinical Nutrition, 63, 954-965.
    Lukaski, H. C., Siders, W. A., & Penland, J. G. (2007). Chromium picolinate supplementation in women: effects on body weight, composition, and iron status. Nutrition, 23, 187-195.
    Martin, J., Wang, Z. Q., Zhang, X. H., Wachtel, D., Volaufova, J., Matthews, D. E., et al. (2006). Chromium picolinate supplementation attenuates body weight gain and increases insulin sensitivity in subjects with type 2 diabetes. Diabetes Care, 29(8), 1826-1832.
    Menaspa`, P., Rampinini, E., Bosio, A., Carlomagno, D., Riggio, M., & Sassi, A. (2010). Physiological and anthropometric characteristics of junior cyclists of different specialties and performance levels. Scandinavian Journal of Medicine & Science in Sports.
    Mertz, W. (1998). Chromium research from a distance: From 1959 to 1980. Journal of the American College of Nutrition, 17(6), 544-547.
    Moukarzel, A. (2009). Chromium in parenteral nutrition: Too little or too much? Gastroenterology, 137(5), S18-S28.
    Olin, K. L., Stearns, D. M., Armstrong, W. H., & Keen, C. L. (1994). Comparative retention/absorption of 51chromium (51Cr) from 51Cr chloride, 51Cr nicotinate and 51Cr picolinate in a rat model. Trace Elements in Medicine, 11(4), 182-186.
    Ozkan, A., & Kin-Isler, A. (2007). The reliability and validity of regulating exercise intensity by ratings of perceived exertion in step dance sessions. Journal of Strength and Conditioning Research, 21, 296-300.
    Pechova, A., & Pavlata, L. (2007). Chromium as an essential nutrient: A review. Veterinarni Medicina, 52, 1-8.
    Phillips, S. M., Turner, A. P., Gray, S., Sanderson, M. F., & Sproule, J. (2010). Ingesting a 6% carbohydrate-electrolyte solution improves endurance capacity, but not sprint performance, during intermittent, high-intensity shuttle running in adolescent team games players aged 12–14 years. Europe Journal of Applied Physiology, 109, 811-821.
    Qiao, W., Peng, Z., Wang, Z., Wei, J., & Zhou, A. (2009). Chromium improves glucose uptake and metabolism through upregulating the mRNA levels of IR, GLUT4, GS, and UCP3 in skeletal muscle cells. Biological Trace Element Researh, 131(2), 133-142.
    Roberts, M. D., Taylor, L. W., Wismann, J. A., Wilborn, C. D., Kreider, R. B., & Willoughby, D. S. (2007). Effects of ingesting JavaFit Energy Extreme functional coffee on aerobic and anaerobic fitness markers in recreationally-active coffee consumers. Journal of the International Society of Sports Nutrition, 4(25), 6-15.
    Robertson, R. J., & Noble, B. J. (1997). Perception of physical exertion: Methods, mediators, and applications. Exercise and Sport Sciences Reviews, 25, 407-452.
    Roginski, E., & Mertz, W. (1969). Effects of chromium (III) supplementation on glucose and amino acid metabolism in rats fed a low protein diet. Journal of Nutrition 97, 525-530.
    Rubin, M. A., Miller, J. P., Ryan, A. S., Treuth, M. S., Patterson, K. Y., Pratley, R. E., et al. (1998). Acute and chronic resistive exercise increase urinary chromium excretion in men as measured with an enriched chromium stable isotope. Journal of Nutrition, 128(1), 73-78.
    Schabort, E. J., Bosch, A. N., Weltan, S. M., & Noakes, T. D. (1999). The effect of a preexercise meal on time to fatigue during prolonged cycling exercise. Medical Science in Sports and Exercise, 31, 464-471.
    Shara, M., Kincaid, A. E., Limpach, A. L., Sandstrom, R., Barrett, L. N., Neil, Bramble, J. D., et al. (2007). Long-term safety evaluation of a novel oxygen-coordinated niacin-bound chromium (III) complex. Journal of Inorganic Biochemistry, 101, 1059-1069.
    Smith, J. W., Zachwieja, J. J., Péronnet, F., Passe, D. H., Massicotte, D., Lavoie, C., et al. (2010). Fuel selection and cycling endurance performance with ingestion of [13C] glucose: evidence for a carbohydrate dose response. Journal of Applied Physiology, 108(6), 1520-1529.
    Temesi, J., Johnson, N. A., Raymond, J., Burdon, C. A., & O’Connor, H. T. (2011). Carbohydrate ingestion during endurance exercise improves performance in adults. Journal of Nutrition, 141(5), 890-897.
    U. S. Deaprtment of Agriculture. (2010). Dietary Reference Intakes (DRIs). Retrieved from
    http://iom.edu/Activities/Nutrition/SummaryDRIs/~/media/Files/Activity%20Files/
    Nutrition/DRIs/RDA%20and%20AIs_Vitamin%20and%20Elements.pdf
    Vincent, J. B. (1999). Mechanisms of chromium action: Low-molecular-weight chromium-binding substance. Journal of the American College of Nutrition, 18(1), 6-12.
    Volek, J. S., SilvestreI, R., Kirwan, J. P., Sharman, M. J., Judelson, D. A., Spiering, B. A., et al. (2006). Effects of chromium supplementation on glycogen synthesis after high-intensity exercise. Medicine and Science in Sports and Exercise, 38(12), 2102-2109.
    Volpe, S. L., Huang, H.-W., Larpadisorn, K., & Lesser, I. I. (2001). Effect of chromium supplementation and exercise on body composition, resting metabolic rate and selected biochemical parameters in moderately obese women following an exercise program. Journal of the American College of Nutrition, 20(4), 293-306.
    Walker, L. S., Bemben, M. G., Bemben, D. A., & Knehans, A. W. (1998). Chromium picolinate effects on body composition and muscular performance in wrestlers. Medicine and Science in Sports and Exercise, 30(12), 1730-1737.
    Wang, Z. Q., Zhang, X. H., & Cefalu, W. T. (2000). Chromium picolinate and biotin enhance glycogen synthesis and glycogen synthase gene expression in human skeletal muscle culture. Diabetes Research and Clinical Practice, 50(Supp 1), 395.
    Xu, H. J., Huang, R. L., Li, T. J., Kong, X. F., & Yin, Y. L. (2010). Nutritional and physiological functions of chromium. Natural Product Research & Development, 22(3), 531-534.

    下載圖示
    QR CODE