簡易檢索 / 詳目顯示

研究生: 許宏彰
Hsu, Hung-Chang
論文名稱: 矽烯與鐵在半導體表面上成長的研究
The study of silicene and iron growth on semiconductor based substrate
指導教授: 傅祖怡
Fu, Tsu-Yi
林文欽
Lin, Wen-Chin
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 114
中文關鍵詞: 矽烯半導體二維材料鐵磁性
英文關鍵詞: silicene, iron, semiconductor, 2D material, ferromagnetic
DOI URL: https://doi.org/10.6345/NTNU202203867
論文種類: 學術論文
相關次數: 點閱:210下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無中文摘要

    Part I Silicene growth
    Using scanning tunneling microscopy (STM), we studied the formation of Si monolayer grown on (√3×√3)R30° Ag-Ge(111) and Ag-Si(111) reconstructed surface, respectively. Thereafter, we also increase Ag thickness, where is formed 6~12 ML Ag(111) layer, to grow silicene. On √3Ag-Si(111), deposited Si exchange with Ag atom to form the new √3Ag-Si(111) islands without forming new Si monolayer. On √3Ag-Ge(111), the Ag-Si exchange behavior is suppressed by stable bonding of Ag and below Ge(111) substrate. We measure the isolated Si monolayer with mixing √3×√3 and 2×2 superstructures on the top layer. From the demonstrated ball model, the Si monolayer found in this study is very possible to consist of honeycomb structure. On Ag(111)/Si(111) surface, we have measured classical silicene superstructures, such as 4×4, √13×√13-I, 2√3×2√3. Unlike growing on the single crystal Ag(111), where the discontinuous silicene sheet formed between various superstructures, the continuous silicene sheet formed between various superstructures on 6~10 ML Ag(111)/Si(111) by Ag domain rotation and shift because of low Ag(111) unstable on Si(111) substrate.

    Part II Iron growth
    In this part, we investigate Fe growth on various substrate, which are Fe/Si(111), Fe/√3Ag/Si(111), Fe/Ge(111), Fe/√3Ag/Ge(111), Fe/MoS2, and Pd/(Fe/Pd/C60)x/Au/Al2O3 system. In Fe/Si(111), we measured the thermal evolution of Fe-silicide from γ- FeSi2 to β- FeSi2, and -FeSi2 at the highest temperature by STM. In particular, the growth of β-FeSi2(011)//Si(111) is different with previous Fe-silicide studies. Besides, the isolated √3Ag-Si buffer layer causes the formation of -FeSi without appearing on Si(111) substrate at the same temperature.
    In Fe/Ge(111), the deposited Fe formed Fe-Ge clusters at RT. When Fe ratio is increased by increasing temperature, Fe-Ge clusters evolve into (2×2) islands, which alloy ratio between Fe1.5Ge to Fe2Ge. In addition, 3D islands forming at 640 K is considered as FeGe monoclinic structure. Besides, the number of √19 ring cluster defect increase to break the order c(2x8) reconstruction by increasing the temperature and disappeared at 640 K. With Ag buffer layer, only nanoparticle growth occurred and 3D islands were formed early at 570 K.
    In Fe/MoS2, we measured the surface morphology, magnetism and chemical states of Fe/MoS2 by STM, MOKE, and XPS, respectively. Fe deposition on the MoS2 substrate resulted in a nanoparticle array with the particle size ranged a few nanometer (). For low-coverage Fe deposition < 6 ML, nanoparticles were well-separated and long-range magnetic anisotropy was absent at room temperature. When the Fe coverage increased, in-plane magnetic anisotropy was observed and the magnetic coercivity increased monotonically. The depth-profiling XPS measurement of Pd/2 ML Fe/MoS2 also confirmed the dominance of the pure Fe state at the interface. The increase in Fe coverage changed the morphology from a nanoparticle array to a continuous coverage, leading to the onset of the ferromagnetic ordering and the transition from a continuous surface oxidation to a bilayer structure.
    At last, we report on the hybridization-induced large X-ray magnetic circular dichroism (XMCD) of carbon in Pd-Fe-C60 composite thin films. The samples were prepared by repeating sequential deposition of C60, Fe and Pd for five times on Au/Al2O3(0001) substrate in an ultrahigh vacuum (UHV) chamber. The Pd-Fe-C60 composite thin films were investigated by MOKE, XMCD, and Raman spectroscopy. The composite thin films revealed in-plane anisotropy. After annealing the sample at 527 K, the Kerr signal became weak and the magnetic coercivity was decreased. Then, considerable XMCD signal was observed at the carbon K-edge, but relatively small XMCD signal appeared at Fe L2,3-edge. In contrast to the XMCD spectrum of mixing transition metal and C60 system in previous study, we observed that the carbon will induce strong XMCD signal. These observations indicate the hybridization-induced magnetic moment in carbon and possible reduction of magnetization in Fe.

    Contents Abstract 4 Chapter 1 Introduction 6 1.1. Si(111)-(7×7) 7 1.2. Ge(111)-c(2×8) 8 1.3. Si-Ag and Si-Ge reconstructed surface 10 1.4. Silicene 12 1.5. MoS2 15 1.6. Iron growth 16 1.6.1. Iron silicide 16 1.6.2. Iron germanide 16 1.6.3. Iron/MoS2 interface 17 1.6.4. Fe/Pd/C60 growth 18 Chapter 2 Experimental details 20 2.1. Scanning Tunneling Microscopy (STM) 20 2.2. X-ray Photoemission Spectrum (XPS) 22 2.3. Magneto-Optical Kerr effect (MOKE) 23 2.4. The experimental setup and process 25 2.4.1. Instruments 25 2.4.2. Substrate preparing 26 2.4.3. Experiment process 27 Chapter 3 Result and discuss 29 3.1. Silicene growth 29 3.1.1. Si grow on Ag-Si reconstructed surface 29 3.1.2. Si grow on Ag-Ge reconstructed surface 34 3.1.3. Si grow on Ag(111)/Si(111) substrate 38 3.2. Fe growth 51 3.2.1. Fe/Si(111) substrate 51 3.2.2. Fe/Ge(111) substrate 67 3.2.3. Fe/MoS2 substrate 80 3.2.4. Fe/Pd/C60 on Au/Sapphire substrate 92 Chapter 4 Conclusion 97 Reference 100

    1 V. F. Motsnyi, J. De Boeck, J. Das, W. Van Roy, G. Borghs, E. Goovaerts, and V. I. Safarov, "Electrical spin injection in a ferromagnet/tunnel barrier/semiconductor heterostructure," Applied Physics Letters 81 (2), 265-267 (2002).
    2 F. J. Jedema, H. B. Heersche, A. T. Filip, J. J. A. Baselmans, and B. J. van Wees, "Electrical detection of spin precession in a metallic mesoscopic spin valve," Nature 416 (6882), 713-716 (2002).
    3 K. Ando, S. Takahashi, J. Ieda, H. Kurebayashi, T. Trypiniotis, C. H. W. Barnes, S. Maekawa, and E. Saitoh, "Electrically tunable spin injector free from the impedance mismatch problem," Nat Mater 10 (9), 655-659 (2011).
    4 Xiaohua Lou, Christoph Adelmann, Scott A. Crooker, Eric S. Garlid, Jianjie Zhang, K. S. Madhukar Reddy, Soren D. Flexner, Chris J. Palmstrom, and Paul A. Crowell, "Electrical detection of spin transport in lateral ferromagnet-semiconductor devices," Nat Phys 3 (3), 197-202 (2007).
    5 R. Jansen, S. P. Dash, S. Sharma, and B. C. Min, "Silicon spintronics with ferromagnetic tunnel devices," Semiconductor Science and Technology 27 (8), 083001 (2012).
    6 T. Spalvins, "A review of recent advances in solid film lubrication," Journal of Vacuum Science & Technology A 5 (2), 212-219 (1987).
    7 Hai Li, Xiaoying Qi, Jumiati Wu, Zhiyuan Zeng, Jun Wei, and Hua Zhang, "Investigation of MoS2 and Graphene Nanosheets by Magnetic Force Microscopy," ACS Nano 7 (3), 2842-2849 (2013).
    8 Hiram J. Conley, Bin Wang, Jed I. Ziegler, Richard F. Haglund, Sokrates T. Pantelides, and Kirill I. Bolotin, "Bandgap Engineering of Strained Monolayer and Bilayer MoS2," Nano Letters 13 (8), 3626-3630 (2013).
    9 Keliang He, Charles Poole, Kin Fai Mak, and Jie Shan, "Experimental Demonstration of Continuous Electronic Structure Tuning via Strain in Atomically Thin MoS2," Nano Letters 13 (6), 2931-2936 (2013).
    10 Xianqing Lin and Jun Ni, "Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2," Journal of Applied Physics 116 (4), 044311 (2014).
    11 Peng Tao, Huaihong Guo, Teng Yang, and Zhidong Zhang, "Strain-induced magnetism in MoS2 monolayer with defects," Journal of Applied Physics 115 (5), 054305 (2014).
    12 Kunio Takayanagi, Yasumasa Tanishiro, Shigeki Takahashi, and Masaetsu Takahashi, "Structure analysis of Si(111)-7×7 reconstructed surface by transmission electron diffraction," Surface Science 164 (2), 367-392 (1985).
    13 JACK S. KILBY, "TURNING POTENTIAL INTO REALITIES: THE INVENTION OF THE INTEGRATED CIRCUIT," International Journal of Modern Physics B 16 (05), 699-710 (2002).
    14 John Bardeen, "Semiconductor Research Leading to the Point Contact Transistor", in Great Solid State Physicists of the 20th Century (WORLD SCIENTIFIC, 2011), pp. 234-260.
    15 K. J. Wan, X. F. Lin, and J. Nogami, "Surface reconstructions in the Ag/Si(111) system," Physical Review B 47 (20), 13700-13712 (1993).
    16 D. Grozea, E. Bengu, and L. D. Marks, "Surface phase diagrams for the Ag–Ge(111) and Au–Si(111) systems," Surface Science 461 (1–3), 23-30 (2000).
    17 Hasegawa Shuji, "Surface-state bands on silicon as electron systems in reduced dimensions at atomic scales," Journal of Physics: Condensed Matter 12 (35), R463 (2000).
    18 Takahashi Toshio, Nakatani Shinichiro, Okamoto Naoko, Ishikawa Tetsuya, and Kikuta Seishi, "Study on the Si(111) √3×√3-Ag Surface Structure by X-Ray Diffraction," Japanese Journal of Applied Physics 27 (5A), L753 (1988).
    19 H. Aizawa, M. Tsukada, N. Sato, and S. Hasegawa, "Asymmetric structure of the Si(111)- √3×√3-Ag surface," Surface Science 429 (1–3), L509-L514 (1999).
    20 L. W. Chou, H. C. Wu, Y. R. Lee, J. C. Jiang, C. Su, and J. C. Lin, "Atomic structure of the Ag/Ge(111)-(√3×√3) surface: From scanning tunneling microscopy observation to theoretical study," J Chem Phys 131 (22), 224705 (2009).
    21 C. Collazo-Davila, D. Grozea, L. D. Marks, R. Feidenhans'l, M. Nielsen, L. Seehofer, L. Lottermoser, G. Falkenberg, R. L. Johnson, M. Göthelid, and U. Karlsson, "Solution of Ge(111)-(4×4)-Ag structure using direct methods applied to X-ray diffraction data," Surface Science 418 (2), 395-406 (1998).
    22 D.J. Spence and S.P. Tear, "STM studies of the Ge(111)4×4Ag reconstruction," Applied Physics A 67 (5), 585-589 (1998).
    23 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science 306 (5696), 666-669 (2004).
    24 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature 438 (7065), 197-200 (2005).
    25 Kyozaburo Takeda and Kenji Shiraishi, "Theoretical possibility of stage corrugation in Si and Ge analogs of graphite," Physical Review B 50 (20), 14916-14922 (1994).
    26 YuChen Wang, Kurt Scheerschmidt, and Ulrich Gösele, "Theoretical investigations of bond properties in graphite and graphitic silicon," Physical Review B 61 (19), 12864-12870 (2000).
    27 S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, "Two- and one-dimensional honeycomb structures of silicon and germanium," Phys Rev Lett 102 (23), 236804 (2009).
    28 Patrick Vogt, Paola De Padova, Claudio Quaresima, Jose Avila, Emmanouil Frantzeskakis, Maria Carmen Asensio, Andrea Resta, Bénédicte Ealet, and Guy Le Lay, "Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon," Physical Review Letters 108 (15), 155501 (2012).
    29 Boubekeur Lalmi, Hamid Oughaddou, Hanna Enriquez, Abdelkader Kara, Sébastien Vizzini, Bénidicte Ealet, and Bernard Aufray, "Epitaxial growth of a silicene sheet," Applied Physics Letters 97 (22), 223109 (2010).
    30 Ryuichi Arafune, Chun-Liang Lin, Kazuaki Kawahara, Noriyuki Tsukahara, Emi Minamitani, Yousoo Kim, Noriaki Takagi, and Maki Kawai, "Structural transition of silicene on Ag(111)," Surface Science 608, 297-300 (2013).
    31 Lin Chun-Liang, Arafune Ryuichi, Kawahara Kazuaki, Tsukahara Noriyuki, Minamitani Emi, Kim Yousoo, Takagi Noriaki, and Kawai Maki, "Structure of Silicene Grown on Ag(111)," Applied Physics Express 5 (4), 045802 (2012).
    32 Cheng-Cheng Liu, Hua Jiang, and Yugui Yao, "Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin," Physical Review B 84 (19), 195430 (2011).
    33 Lan Chen, Baojie Feng, and Kehui Wu, "Observation of a possible superconducting gap in silicene on Ag(111) surface," Applied Physics Letters 102 (8), 081602 (2013).
    34 Zeyuan Ni, Qihang Liu, Kechao Tang, Jiaxin Zheng, Jing Zhou, Rui Qin, Zhengxiang Gao, Dapeng Yu, and Jing Lu, "Tunable Bandgap in Silicene and Germanene," Nano Letters 12 (1), 113-118 (2012).
    35 Chengyong Xu, Guangfu Luo, Qihang Liu, Jiaxin Zheng, Zhimeng Zhang, Shigeru Nagase, Zhengxiang Gao, and Jing Lu, "Giant magnetoresistance in silicene nanoribbons," Nanoscale 4 (10), 3111-3117 (2012).
    36 Motohiko Ezawa, "Monolayer Topological Insulators: Silicene, Germanene, and Stanene," Journal of the Physical Society of Japan 84 (12), 121003 (2015).
    37 Li Tao, Eugenio Cinquanta, Daniele Chiappe, Carlo Grazianetti, Marco Fanciulli, Madan Dubey, Alessandro Molle, and Deji Akinwande, "Silicene field-effect transistors operating at room temperature," Nat Nano 10 (3), 227-231 (2015).
    38 E. Scalise, E. Cinquanta, M. Houssa, B. van den Broek, D. Chiappe, C. Grazianetti, G. Pourtois, B. Ealet, A. Molle, M. Fanciulli, V. V. Afanas’ev, and A. Stesmans, "Vibrational properties of epitaxial silicene layers on (1 1 1) Ag," Applied Surface Science 291, 113-117 (2014).
    39 Andrea Splendiani, Liang Sun, Yuanbo Zhang, Tianshu Li, Jonghwan Kim, Chi-Yung Chim, Giulia Galli, and Feng Wang, "Emerging Photoluminescence in Monolayer MoS2," Nano Letters 10 (4), 1271-1275 (2010).
    40 Sang Wook Han, Young Hun Hwang, Seon-Ho Kim, Won Seok Yun, J. D. Lee, Min Gyu Park, Sunmin Ryu, Ju Sang Park, Dae-Hwang Yoo, Sang-Pil Yoon, Soon Cheol Hong, Kwang S. Kim, and Young S. Park, "Controlling Ferromagnetic Easy Axis in a Layered MoS2 Single Crystal," Physical Review Letters 110 (24), 247201 (2013).
    41 W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, "Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics," Nature 514 (7523), 470-474 (2014).
    42 C. González, B. Biel, and Y. J. Dappe, "Theoretical characterisation of point defects on a MoS2 monolayer by scanning tunnelling microscopy," Nanotechnology 27 (10), 105702 (2016).
    43 B. Predel, "Fe-Si (Iron-Silicon)", in Dy-Er – Fr-Mo, edited by O. Madelung (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995), pp. 1-6.
    44 Guofu Hou, Cao Yu, Fang Liu, Jian Sun, Xinhua Geng, and Ying Zhao, "Low-temperature deposition of high quality β-FeSi2 films by co-sputtering of Fe and Si for β-FeSi2/Si heterojunction solar cell," physica status solidi (c) 7 (3-4), 1081-1084 (2010).
    45 Yunosuke Makita, Teruhisa Ootsuka, Yasuhiro Fukuzawa, Naotaka Otogawa, Hironori Abe, Zhengxin Liu, and Yasuhiko Nakayama, 2006 (unpublished).
    46 Kenji Yamaguchi and Kazuki Mizushima, "Luminescent FeSi2 Crystal Structures Induced by Heteroepitaxial Stress on Si(111)," Physical Review Letters 86 (26), 6006-6009 (2001).
    47 Azusa N. Hattori, Ken Hattori, Keita Kataoka, Emi Takematsu, Akira Ishii, Fumio Komori, and Hiroshi Daimon, "Systematic study of surface magnetism in Si(111)–Fe system grown by solid phase epitaxy: In situ schematic magnetic phase diagram of Si(111)–Fe," Journal of Magnetism and Magnetic Materials 363, 158-165 (2014).
    48 Schäffler Friedrich, "High-mobility Si and Ge structures," Semiconductor Science and Technology 12 (12), 1515 (1997).
    49 Ravi M Todi, Gate stack and channel engineering: Study of metal gates and Ge channel devices. (University of Central Florida, 2007).
    50 R. M. Todi and M. M. Heyns, "Germanium: The semiconductor comeback material," IEEE Potentials 26 (2), 34-38 (2007).
    51 Eddy Simoen, Karl Opsomer, Cor Claeys, Karen Maex, Christophe Detavernier, RL Van Meirhaeghe, and Paul Clauws, presented at the Solid State Phenomena, 2007 (unpublished).
    52 E. Simoen, K. Opsomer, C. Claeys, K. Maex, C. Detavernier, R. L. Van Meirhaeghe, and P. Clauws, "Study of metal-related deep-level defects in germanide Schottky barriers on n-type germanium," Journal of Applied Physics 104 (2), 023705 (2008).
    53 A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, "Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor," Applied Physics Letters 80 (7), 1240-1242 (2002).
    54 Victor L Moruzzi, James F Janak, and Arthur R Williams, Calculated electronic properties of metals. (Elsevier, 2013).
    55 Sebastian Loth, Susanne Baumann, Christopher P. Lutz, D. M. Eigler, and Andreas J. Heinrich, "Bistability in Atomic-Scale Antiferromagnets," Science 335 (6065), 196-199 (2012).
    56 U. Starke, W. Weiss, M. Kutschera, R. Bandorf, and K. Heinz, "High quality iron silicide films by simultaneous deposition of iron and silicon on Si(111)," Journal of Applied Physics 91 (9), 6154-6161 (2002).
    57 Jong Han Won, Kazuhisa Sato, Manabu Ishimaru, and Yoshihiko Hirotsu, "Transmission electron microscopy study on FeSi2 nanoparticles synthesized by electron-beam evaporation," Journal of Applied Physics 100 (1), 014307 (2006).
    58 K. Kataoka, K. Hattori, Y. Miyatake, and H. Daimon, "Iron silicides grown by solid phase epitaxy on a Si(111) surface: Schematic phase diagram," Physical Review B 74 (15), 155406 (2006).
    59 H. Yamada, K. Terao, H. Ohta, and E. Kulatov, "Electronic structure and magnetism of FeGe with B20-type structure," Physica B: Condensed Matter 329–333, Part 2, 1131-1133 (2003).
    60 Haifeng Du, Renchao Che, Lingyao Kong, Xuebing Zhao, Chiming Jin, Chao Wang, Jiyong Yang, Wei Ning, Runwei Li, Changqing Jin, Xianhui Chen, Jiadong Zang, Yuheng Zhang, and Mingliang Tian, "Edge-mediated skyrmion chain and its collective dynamics in a confined geometry," Nat Commun 6 (2015).
    61 George Lungu, Nicoleta Apostol, Laura Stoflea, Ruxandra Costescu, Dana Popescu, and Cristian Teodorescu, "Room Temperature Ferromagnetic, Anisotropic, Germanium Rich FeGe(001) Alloys," Materials 6 (2), 612 (2013).
    62 Changgan Zeng, P. R. C. Kent, M. Varela, M. Eisenbach, G. M. Stocks, Maria Torija, Jian Shen, and Hanno H. Weitering, "Epitaxial Stabilization of Ferromagnetism in the Nanophase of FeGe," Physical Review Letters 96 (12), 127201 (2006).
    63 W. G. Chu, A. Tsuruta, M. Owari, and Y. Nihei, "Growth of Fe on Ge(111) at room temperature studied by X-ray photoelectron diffraction," Surface Science 601 (3), 638-648 (2007).
    64 H. Okamoto, "Fe-Ge (Iron-Germanium)," Journal of Phase Equilibria and Diffusion 29 (3), 292-292 (2008).
    65 Tsu-Yi Fu, Jia-Yuan Wu, Ming-Kuan Jhou, and Hung-Chan Hsu, "The role of Ag buffer layer in Fe islands growth on Ge (111) surfaces," Journal of Applied Physics 117 (17), 17B724 (2015).
    66 Agnieszka Tomaszewska, Xiao-Lan Huang, Chun-Liang Lin, Kuo-Wei Chang, and Tsu-Yi Fu, "Formation of Ni-driven nano-sized structures on Ag/Ge (111)-√ 3×√ 3 surface: STM study," International Journal of Nanotechnology 11 (12), 1129-1137 (2014).
    67 E. Suliga and M. Henzler, "Diffusion of Ag on clean Ge(111) with different step densities," Journal of Physics C: Solid State Physics 16 (8), 1543 (1983).
    68 L. J. Swartzendruber, "The Ag−Fe (Silver-Iron) system," Bulletin of Alloy Phase Diagrams 5 (6), 560-564 (1984).
    69 G. P. Felcher and J. D. Jorgensen, "Magnetic structures of monoclinic FeGe," Journal of Physics C: Solid State Physics 16 (32), 6281 (1983).
    70 R. Jaafar, Y. Nehme, D. Berling, J. L. Bubendorff, A. Mehdaoui, C. Pirri, G. Garreau, and C. Uhlaq-Bouillet, "Room-temperature ferromagnetism in single crystal Fe1.7Ge thin films of high thermal stability grown on Ge(111)," Applied Physics Letters 93 (3), 033114 (2008).
    71 R. Jaafar, D. Berling, D. Sébilleau, and G. Garreau, "Epitaxial Fe-Ge thin films on Ge(111): Morphology, structure, and magnetic properties versus stoichiometry," Physical Review B 81 (15), 155423 (2010).
    72 Dustin A. Gilbert, Brian B. Maranville, Andrew L. Balk, Brian J. Kirby, Peter Fischer, Daniel T. Pierce, John Unguris, Julie A. Borchers, and Kai Liu, "Realization of ground-state artificial skyrmion lattices at room temperature," Nat Commun 6 (2015).
    73 M. Kamaratos and C. Papageorgopoulos, "Intercalation of MoS2(0001) with Fe, Ni and Pd," Solid State Communications 61 (9), 567-569 (1987).
    74 Thomas D. Durbin, Jeffrey R. Lince, Stephen V. Didziulis, David K. Shuh, and Jory A. Yarmoff, "Soft X-ray photoelectron spectroscopy study of the interaction of Cr with MoS2(0001)," Surface Science 302 (3), 314-328 (1994).
    75 J. Bulicz, L. Morales de la Garza, and S. Fuentes, "Chemical interaction of pulsed laster deposited Co with the MoS2(0001) surface," Surface Science 365 (2), 411-421 (1996).
    76 A. Mascaraque, L. Morales de la Garza, and E. G. Michel, "Electronic structure and reactivity of the Co/MoS2(0001) interface," Surface Science 482–485, Part 1, 664-668 (2001).
    77 R. F. Frindt, A. S. Arrott, A. E. Curzon, B. Heinrich, S. R. Morrison, T. L. Templeton, R. Divigalpitiya, M. A. Gee, P. Joensen, P. J. Schurer, and J. L. LaCombe, "Exfoliated MoS2 monolayers as substrates for magnetic materials," Journal of Applied Physics 70 (10), 6224-6226 (1991).
    78 Wen-Chin Lin, Ya-Yun Huang, Tsung-Ying Ho, and Chih-Hsiung Wang, "Stable canted magnetization in Co thin films on highly oriented pyrolytic graphite induced by template defects," Applied Physics Letters 99 (17), 172502 (2011).
    79 Wen-Chin Lin, Fang-Yuh Lo, Ya-Yun Huang, Chih-Hsiung Wang, and Ming-Yau Chern, "Canted magnetization in Fe thin films on highly oriented pyrolytic graphite," Journal of Applied Physics 110 (8), 083911 (2011).
    80 Lingyi A. Zheng, Enrique V. Barrera, and Robert D. Shull, "Magnetic properties of the Co–C60 and Fe–C60 nanocrystalline magnetic thin films," Journal of Applied Physics 97 (9), 094309 (2005).
    81 K. Bairagi, A. Bellec, V. Repain, C. Chacon, Y. Girard, Y. Garreau, J. Lagoute, S. Rousset, R. Breitwieser, Yu-Cheng Hu, Yen Cheng Chao, Woei Wu Pai, D. Li, A. Smogunov, and C. Barreteau, "Tuning the Magnetic Anisotropy at a Molecule-Metal Interface," Physical Review Letters 114 (24), 247203 (2015).
    82 Z. H. Xiong, Di Wu, Z. Valy Vardeny, and Jing Shi, "Giant magnetoresistance in organic spin-valves," Nature 427 (6977), 821-824 (2004).
    83 Ran Lin, Fujian Wang, Markus Wohlgenannt, Chunyong He, Xiaofang Zhai, and Yuri Suzuki, "Organic spin-valves based on fullerene C60," Synthetic Metals 161 (7–8), 553-557 (2011).
    84 Venkata Ramana Mudinepalli, Cheng-Jui Tsai, Ying-Chin Chuang, Po-Chun Chang, N. Plusnin, and Wen-Chin Lin, "Annealing-induced alloy formation in Pd/Fe bilayers on Si(111) for hydrogen sensing," Applied Surface Science 366, 38-45 (2016).
    85 Wen-Chin Lin, Bo-Yao Wang, Han-Yuan Huang, Cheng-Jui Tsai, and Venkata Ramana Mudinepalli, "Hydrogen absorption-induced reversible change in magnetic properties of Co–Pd alloy films," Journal of Alloys and Compounds 661, 20-26 (2016).
    86 Wen-Chin Lin, Cheng-Jui Tsai, Han-Yuan Huang, Bo-Yao Wang, Venkata Ramana Mudinepalli, and Hsiang-Chih Chiu, "Hydrogen-mediated long-range magnetic ordering in Pd-rich alloy film," Applied Physics Letters 106 (1), 012404 (2015).
    87 S. Ghosh, S. Tongay, A. F. Hebard, H. Sahin, and F. M. Peeters, "Ferromagnetism in stacked bilayers of Pd/C60," Journal of Magnetism and Magnetic Materials 349, 128-134 (2014).
    88 Dipendu Saha and Shuguang Deng, "Hydrogen Adsorption on Pd- and Ru-Doped C60 Fullerene at an Ambient Temperature," Langmuir 27 (11), 6780-6786 (2011).
    89 W. D. Boukhvalov and I. M. Katsnelson, "Defect-induced ferromagnetism in fullerenes," The European Physical Journal B 68 (4), 529-535 (2009).
    90 Yuchen Ma, P. O. Lehtinen, A. S. Foster, and R. M. Nieminen, "Hydrogen-induced magnetism in carbon nanotubes," Physical Review B 72 (8), 085451 (2005).
    91 H. Ohldag, P. Esquinazi, E. Arenholz, D. Spemann, M. Rothermel, A. Setzer, and T. Butz, "The role of hydrogen in room-temperature ferromagnetism at graphite surfaces," New Journal of Physics 12 (12), 123012 (2010).
    92 Joseph A Stroscio and William J Kaiser, Scanning tunneling microscopy. (Academic Press, 1993).
    93 I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, "WSXM: A software for scanning probe microscopy and a tool for nanotechnology," Review of Scientific Instruments 78 (1), 013705 (2007).
    94 Joong-mok Park, "Optical and magneto-optic Kerr effects of MnBi Ni2MnGa and Gd5S," Retrospective Theses and Dissertations. Paper 1117 (2004).
    95 Tsuyoshi Yamagami, Junki Sone, Kan Nakatsuji, and Hiroyuki Hirayama, "Surfactant role of Ag atoms in the growth of Si layers on Si(111)√3×√3-Ag substrates," Applied Physics Letters 105 (15), 151603 (2014).
    96 Zhi-Gang Shao, Xue-Sheng Ye, Lei Yang, and Cang-Long Wang, "First-principles calculation of intrinsic carrier mobility of silicene," Journal of Applied Physics 114 (9), 093712 (2013).
    97 C. Grazianetti, D. Chiappe, E. Cinquanta, M. Fanciulli, and A. Molle, "Nucleation and temperature-driven phase transitions of silicene superstructures on Ag(1 1 1)," Journal of Physics: Condensed Matter 27 (25), 255005 (2015).
    98 C. Praetorius, M. Zinner, P. Hansmann, M. W. Haverkort, and K. Fauth, "Exploring small energy scales with x-ray absorption and dichroism," Physical Review B 93 (16), 165107 (2016).
    99 K. H. Park, J. S. Ha, W. S. Yun, and E. H. Lee, "Initial stage of Ag epitaxial growth on Sb-terminated Si(111) surface," Surface Science 405 (1), 46-53 (1998).
    100 H. Jamgotchian, Y. Colignon, N. Hamzaoui, B. Ealet, J. Y. Hoarau, B. Aufray, and J. P. Bibérian, "Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature," Journal of Physics: Condensed Matter 24 (17), 172001 (2012).
    101 Junfeng Gao and Jijun Zhao, "Initial geometries, interaction mechanism and high stability of silicene on Ag(111) surface," Scientific Reports 2, 861 (2012).
    102 P. Pflugradt, L. Matthes, and F. Bechstedt, "Silicene-derived phases on Ag(111) substrate versus coverage: Ab initio studies," Physical Review B 89 (3), 035403 (2014).
    103 Eugenio Cinquanta, Emilio Scalise, Daniele Chiappe, Carlo Grazianetti, Bas van den Broek, Michel Houssa, Marco Fanciulli, and Alessandro Molle, "Getting through the nature of silicene: An sp2–sp3 two-dimensional silicon nanosheet," The Journal of Physical Chemistry C 117 (32), 16719-16724 (2013).
    104 Baojie Feng, Zijing Ding, Sheng Meng, Yugui Yao, Xiaoyue He, Peng Cheng, Lan Chen, and Kehui Wu, "Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111)," Nano Letters 12 (7), 3507-3511 (2012).
    105 Liu Zhi-Long, Wang Mei-Xiao, Xu Jin-Peng, Ge Jian-Feng, Lay Guy Le, Vogt Patrick, Qian Dong, Gao Chun-Lei, Liu Canhua, and Jia Jin-Feng, "Various atomic structures of monolayer silicene fabricated on Ag(111)," New Journal of Physics 16 (7), 075006 (2014).
    106 Shim Hyungjoon and Lee Geunseop, "Atomic and Electronic Structures of the Ni-induced Phases on Si(111): Scanning Tunneling Microscopy and Spectroscopy Study," Journal of the Korean Physical Society 59 (6), 3367 (2011).
    107 J. C. Mahato, Debolina Das, Anupam Roy, R. Batabyal, R. R. Juluri, P. V. Satyam, and B. N. Dev, "Uniformity of epitaxial nanostructures of CoSi2 via defect control of the Si (111) surface," Thin Solid Films 534, 296-300 (2013).
    108 Y. Manassen, H. Realpe, R. Shneck, D. Barlam, and A. Brokman, "Out-of-plane STM displacement measurements and evaluation of elastic fields in iron silicide islands on silicon," Physical Review B 68 (7), 075412 (2003).
    109 E. G. Michel, "Epitaxial iron silicides: geometry, electronic structure and applications," Applied Surface Science 117–118, 294-302 (1997).
    110 Hugh Baker and Hiroaki Okamoto, "ASM Handbook, Volume 03 - Alloy Phase Diagrams", (ASM International).
    111 M. Someta, K. Maetani, K. Hattori, and H. Daimon, "Phase discrimination of iron-silicides on Si(001) surfaces by three-dimensional reciprocal-lattice mapping," Surface Science 604 (1), 21-26 (2010).
    112 N. Jedrecy, A. Waldhauer, M. Sauvage-Simkin, R. Pinchaux, and Y. Zheng, "Structural characterization of epitaxial -derived FeSi2 on Si(111)," Physical Review B 49 (7), 4725-4730 (1994).
    113 Gary Navrotski, Cornell University, 2007.
    114 I. Maafa, S. Hajjar-Garreau, R. Jaafar, D. Berling, C. Pirri, A. Mehdaoui, E. Denys, A. Florentin, and G. Garreau, "Room-temperature ferromagnetism of all-epitaxial β-Fe–Ge/diamond–Ge/β-Fe–Ge trilayers," Journal of Physics: Condensed Matter 25 (25), 256007 (2013).
    115 B. Predel, "Fe-Ge (Iron-Germanium)", in Dy-Er – Fr-Mo, edited by O. Madelung (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995), pp. 1-5.
    116 R. J. Phaneuf and M. B. Webb, "A LEED study of Ge(111); a high-temperature incommensurate structure," Surface Science 164 (1), 167-195 (1985).
    117 M. V. Ivanchenko, E. A. Borisenko, V. G. Kotlyar, O. A. Utas, A. V. Zotov, A. A. Saranin, V. V. Ustinov, N. I. Solin, L. N. Romashev, and V. G. Lifshits, "Comparative STM study of SPE growth of FeSi2 nanodots on Si(1 1 1)7×7 and -R30°- surfaces," Surface Science 600 (12), 2623-2628 (2006).
    118 Tsu-Yi Fu, Agnieszka Tomaszewska, Xiao-Lan Huang, Jhen-Hao Li, Po-I Hsieh, and Ming-Kuan Jhou, "Nickel-containing nano-sized islands grown on Ge(111)-c(2 × 8) and Ag/Ge(111)-(√3 × √3) surfaces," Nanoscale Research Letters 8 (1), 1-8 (2013).
    119 M. Weimer, J. Kramar, C. Bai, and J. D. Baldeschwieler, "Tunneling microscopy of 2H-MoS2: A compound semiconductor surface," Physical Review B 37 (8), 4292-4295 (1988).
    120 Chih-Pin Lu, Guohong Li, Jinhai Mao, Li-Min Wang, and Eva Y. Andrei, "Bandgap, Mid-Gap States, and Gating Effects in MoS2," Nano Letters 14 (8), 4628-4633 (2014).
    121 Haryani Permana, Sangho Lee, and K. Y. Simon Ng, "Observation of protrusions and ring structures on MoS2 by scanning tunneling microscopy," Journal of Vacuum Science & Technology B 10 (5), 2297-2301 (1992).
    122 I. N. Kholmanov, L. Gavioli, M. Fanetti, M. Casella, C. Cepek, C. Mattevi, and M. Sancrotti, "Effect of substrate surface defects on the morphology of Fe film deposited on graphite," Surface Science 601 (1), 188-192 (2007).
    123 Wen-Chin Lin, Shen-Shing Wong, Po-Chun Huang, Chii-Bin Wu, Bin-Rui Xu, Cheng-Tien Chiang, Hong-Yu Yen, and Minn-Tsong Lin, "Controlled growth of Co nanoparticle assembly on nanostructured template Al2O3∕NiAl(100)," Applied Physics Letters 89 (15), 153111 (2006).
    124 M. F. Luo, C. I. Chiang, H. W. Shiu, S. D. Sartale, and C. C. Kuo, "Patterning Co nanoclusters on thin-film Al2O3/NiAl(100)," Nanotechnology 17 (2), 360 (2006).
    125 Shangjr Gwo, Chung-Pin Chou, Chung-Lin Wu, Yi-Jen Ye, Shu-Ju Tsai, Wen-Chin Lin, and Minn-Tsong Lin, "Self-Limiting Size Distribution of Supported Cobalt Nanoclusters at Room Temperature," Physical Review Letters 90 (18), 185506 (2003).
    126 Olga Dulub, Lynn A. Boatner, and Ulrike Diebold, "STM study of Cu growth on the ZnO(1 0 1̄ 0) surface," Surface Science 504, 271-281 (2002).
    127 I. K. Schiffmann, Matthias Fryda, Günther Goerigk, Rolf Lauer, and Peter Hinze, "Correction of STM tip convolution effects in particle size and distance determination of metal-C:H films," Fresenius' Journal of Analytical Chemistry 358 (1), 341-344 (1997).
    128 K. Sell, A. Kleibert, v. V. Oeynhausen, and K.-H. Meiwes-Broer, "The structure of cobalt nanoparticles on Ge(001)," The European Physical Journal D 45 (3), 433-437 (2007).
    129 Canet-Ferrer Josep, Coronado Eugenio, Forment-Aliaga Alicia, and Pinilla-Cienfuegos Elena, "Correction of the tip convolution effects in the imaging of nanostructures studied through scanning force microscopy," Nanotechnology 25 (39), 395703 (2014).
    130 K. Liu and C. L. Chien, "Magnetic and magneto-transport properties of novel nanostructured networks," IEEE Transactions on Magnetics 34 (4), 1021-1023 (1998).
    131 Kuan-Te Liu, Jian-Wei Chen, Yu-Wen Liao, Wen-Chin Lin, Chii-Bin Wu, Chien-Cheng Kuo, Minn-Tsong Lin, and Ker-Jar Song, "Controllable sealing of leaky alumina films on NiAl(100) surface by catalytic oxidation," Journal of Applied Physics 115 (4), 044310 (2014).
    132 Wen-Chin Lin, Po-Chun Huang, Ker-Jar Song, and Minn-Tsong Lin, "Enhanced Curie temperatures in Fe and Co magnetic nanoparticle assembly on single-crystalline Al2O3∕NiAl(100) with normal metal capping layer," Applied Physics Letters 88 (15), 153117 (2006).
    133 A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Begin-Colin, "Size-dependent properties of magnetic iron oxide nanocrystals," Nanoscale 3 (1), 225-232 (2011).
    134 W. Wu, X. H. Xiao, F. Ren, S. F. Zhang, and C. Z. Jiang, "A Comparative Study of the Magnetic Behavior of Single and Tubular Clustered Magnetite Nanoparticles," Journal of Low Temperature Physics 168 (5), 306-313 (2012).
    135 Luo Zhixun and Fang Yan, "SERS of gold/C60 (/C70) nano-clusters deposited on iron surface," Vibrational Spectroscopy 39 (2), 151-156 (2005).
    136 Ivana Kopova, Vasily Lavrentiev, Jiri Vacik, and Lucie Bacakova, "Growth and Potential Damage of Human Bone-Derived Cells Cultured on Fresh and Aged C 60/Ti Films," PloS one 10 (4), e0123680 (2015).
    137 M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, and R. Saito, "Raman spectroscopy on isolated single wall carbon nanotubes," Carbon 40 (12), 2043-2061 (2002).
    138 Radoslaw Belka, Malgorzata Suchanska, Elzbieta Czerwosz, and Justyna Keczkowska, "Raman studies of Pd-C nanocomposites," Central European Journal of Physics 11 (2), 245-250 (2013).
    139 Lingyi Zheng, Rice University, 1999.
    140 A. V. Talyzin, A. Dzwilewski, and M. Pudelko, "Formation of palladium fullerides and their thermal decomposition into palladium nanoparticles," Carbon 45 (13), 2564-2569 (2007).
    141 E. A. Skryleva, Yu N. Parkhomenko, I. M. Karnaukh, E. A. Zhukova, A. R. Karaeva, and V. Z. Mordkovich, "XPS characterization of MWCNT and C60–based composites," Fullerenes, Nanotubes and Carbon Nanostructures, 00-00 (2016).
    142 Bo Wästberg, Sten Lunell, Christer Enkvist, Paul A. Brühwiler, Andrew J. Maxwell, and Nils Mårtensson, "x-ray-absorption spectroscopy of C60: The effects of screening and core-hole relaxation," Physical Review B 50 (17), 13031-13034 (1994).
    143 A. V. Talyzin and U. Jansson, "A comparative Raman study of some transition metal fullerides," Thin Solid Films 429 (1–2), 96-101 (2003).
    144 H. Ohldag, T. Tyliszczak, R. Höhne, D. Spemann, P. Esquinazi, M. Ungureanu, and T. Butz, "-Electron Ferromagnetism in Metal-Free Carbon Probed by Soft X-Ray Dichroism," Physical Review Letters 98 (18), 187204 (2007).
    145 Stephen W Lovesey and Steve P Collins, X-ray scattering and absorption by magnetic materials. (Oxford University Press, 1996).
    146 Anton Nikitin, Xiaolin Li, Zhiyong Zhang, Hirohito Ogasawara, Hongjie Dai, and Anders Nilsson, "Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C−H Bonds," Nano Letters 8 (1), 162-167 (2008).
    147 AP Grosvenor, BA Kobe, MC Biesinger, and NS McIntyre, "Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds," Surface and Interface Analysis 36 (12), 1564-1574 (2004).
    148 Zaneta Swiatkowska-Warkocka, Kenji Kawaguchi, Hongqiang Wang, Yukiko Katou, and Naoto Koshizaki, "Controlling exchange bias in Fe3O4/FeO composite particles prepared by pulsed laser irradiation," Nanoscale Research Letters 6 (1), 226-226 (2011).
    149 Laura Martin-Garcia, Ivan Bernal-Villamil, Mohamed Oujja, Esther Carrasco, Raquel Gargallo-Caballero, Marta Castillejo, Jose F. Marco, Silvia Gallego, and Juan de la Figuera, "Unconventional properties of nanometric FeO(111) films on Ru(0001): stoichiometry and surface structure," Journal of Materials Chemistry C 4 (9), 1850-1859 (2016).
    150 Andrej Furlan, Ulf Jansson, Jun Lu, Lars Hultman, and Martin Magnuson, "Structure and bonding in amorphous iron carbide thin films," Physics (2015).
    151 Sanjeev Gautama, P Thakur, S Augustine, JK Kang, J-Y Kim, NB Brookes, K Asokan, and Keun Hwa Chae, "Electronic and magnetic structure of carbon nanotubes using x-ray absorption and magnetic circular dichroism spectroscopy," arXiv preprint arXiv:1111.5416 (2011).
    152 P. K. Johnny Wong, Wen Zhang, Kai Wang, Gerrit van der Laan, Yongbing Xu, Wilfred G. van der Wiel, and Michel P. de Jong, "Electronic and magnetic structure of C60/Fe3O4(001): a hybrid interface for organic spintronics," Journal of Materials Chemistry C 1 (6), 1197-1202 (2013).
    153 T. Lan Anh Tran, Deniz Çakır, P. K. Johnny Wong, Alexei B. Preobrajenski, Geert Brocks, Wilfred G. van der Wiel, and Michel P. de Jong, "Magnetic Properties of bcc-Fe(001)/C60 Interfaces for Organic Spintronics," ACS Applied Materials & Interfaces 5 (3), 837-841 (2013).
    154 Timothy Moorsom, May Wheeler, Taukeer Mohd Khan, Fatma Al Ma’Mari, Christian Kinane, Sean Langridge, David Ciudad, Amílcar Bedoya-Pinto, Luis Hueso, Gilberto Teobaldi, Vlado K. Lazarov, Daniel Gilks, Gavin Burnell, Bryan J. Hickey, and Oscar Cespedes, "Spin-polarized electron transfer in C60 interfaces," Physical Review B 90 (12), 125311 (2014).
    155 H. -Ch. Mertins, S. Valencia, W. Gudat, P. M. Oppeneer, O. Zaharko, and H. Grimmer, "Direct observation of local ferromagnetism on carbon in C/Fe multilayers," EPL (Europhysics Letters) 66 (5), 743 (2004).
    156 Yu M Shul'Ga, AS Lobach, IN Ivleva, Yu G Morozov, VN Spector, and AA Ovchinnikov, "Magnetic properties of C60Pdn fullerides," Molecular Crystals and Liquid Crystals Science and Technology Section C-Molecular Materials 10 (1-4), 201-206 (1998).

    下載圖示
    QR CODE