研究生: |
王俊賢 Wang, Chun-Hsien |
---|---|
論文名稱: |
利用紅外線浮水印技術設計不同顯示效果之擴增實境辨識圖案 Using Infrared Watermark Technology to Design AR Marker with Different Hiding Effects |
指導教授: | 王希俊 |
學位類別: |
碩士 Master |
系所名稱: |
圖文傳播學系 Department of Graphic Arts and Communications |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 紅外線浮水印 、擴增實境 、數位半色調 |
英文關鍵詞: | Infrared watermark, Augmented reality, Digital halftoning |
論文種類: | 學術論文 |
相關次數: | 點閱:219 下載:34 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今AR(augmented reality,擴增實境)在各領域的應用案例十分廣泛,如以教學為例,利用AR可提昇教學過程中的趣味性與多元性,增強學習興趣。但由於擴增實境辨識圖案於人眼閱讀並無意義,且會占據圖文版面影響閱讀效果,但假使將辨識圖案完全隱藏則可能產生使用者不知道有隱藏資訊存在之隱憂。
因此,本研究欲結合數位半色調技術與紅外線浮水印技術配合濃度匹配導表,製作不同顯示效果之擴增實境辨識圖案,使其能結合應用於產品中,使產品具有提示效果的隱藏浮水印,既能保持圖文版面的完整又能提示隱藏紅外線資訊之存在。
本研究主要使用數位半色調技術製作青(C)、洋紅(M)、黃(Y)三色墨與黑(K)墨匹配之濃度導表及紅外線浮水印,並可根據此導表製作出不影響閱讀行為又具提示隱藏資訊作用的半隱藏式擴增實境辨識圖案浮水印,使用者於觀看圖文版面時同時發現浮水印,即可得知存在隱藏資訊,並以紅外線偵測解碼可獲得擴增實境辨識圖案之隱藏資訊。
將此技術應用於擴增實境產品後,本研究將測試在不同的浮水印顯示效果之下,其偵測及觸發虛擬物件的效果是否會受到影響。經本研究成果證實,根據C、M、Y、K四色墨的匹配導表,可製作不同顯示效果的紅外線擴增實境辨識圖案浮水印,本研究之紅外線浮水印完全隱藏之匹配參數約為K墨20%、C墨31%、M墨35%、Y墨33%,半隱藏式則有兩種不同顯示效果範例,黑色突顯辨識圖案及辨識圖案反白,其濃度參數分別為比全隱藏之匹配濃度低的K墨20%、C墨31%、M墨31%、Y墨31%及比全隱藏之匹配濃度高的K墨20%、C墨36%、M墨36%、Y墨36%。而且本研究之不同顯示效果的紅外線擴增實境辨識圖案浮水印經紅外線儀器偵測解碼後皆可成功呈現擴增實境虛擬物件,可驗證紅外線浮水印的不同顯示效果並不影響其偵測成功率。
Nowadays, AR (Augmented reality) is widely used in education and other areas. For example, using AR in teaching can improve the interest and learning effect. However, the AR Markers are meaningless to human and will occupy the graphic space and interfere the reading effect. On the other hands, the users might not realize the existence of AR markers if the AR markers are totally hidden. Therefore, this study is to combine infrared watermark technology with density matching tables of cyan(C), magenta(M), yellow(Y).black(K)inks. It makes the amplification effect of different hidden markers. The proposed product has prompted the effect of hidden watermarks, not only keep the graphic layout completely, but also can indicate the presence of a hidden infrared information. Finally, this study will test the AR triggering effects of infrared watermarks with different hiding effects. The result shows that the infrared watermark with different hiding effects can be detected and decoded successfully by infrared detection. And it also proves that the different hiding effects of infrared watermark do not affect the IR detecting ability.
中文文獻
徐仲萱(民102)。運用點矩陣全像片呈現擴增實境之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
陳永甫(民 93)。紅外輻射紅外器件與典型應用。北京:電子工業出版社,1-2。
張家龍(民97,4月)。紅外線數位浮水印結合資訊加密之防偽設計。2008資訊科技國際研討會論文集,台中市:朝陽科技大學資訊工程系。
梁鳳儒 (民99)。紅外線浮水印應用於音樂節目單之音訊互動研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
劉文心(民97)。以紅外線浮水印為基礎之擴增實境創新研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
鄭雅文(民102)。改良式混合網點應用於數位浮水印之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
蕭佩琪、王希俊、連啟明(民93)。文件底紋之混合網點數位浮水印技術。第三屆數位典藏技術研討會論文集,223-230,台北市。
英文文獻
Azuma, R. T. (1997). A survey of augmented reality. Teleoperators and Virtual Environments, 6(4), 355-385.
Bender, W., Gruhl, D., Morimoto, N., & Lu, A. (1996). Techniques for data hiding. IBM System Journal, 35(3&4), 313-336.
Billinghurst, M., & Duenser, A. (2012). Augmented reality in the classroom. Computer, 45(7), 56-63. doi: 10.1109/MC.2012.111
Billinghurst, M., Kato, H., & Poupyrev, I. (2001). The MagicBook—Moving seamlessly between reality and virtuality. IEEE Computer Graphics and Applications, 21(3), 6-8. doi: 10.1109/38.920621
Demuynck, O., & Menéndez, J. M. (2013). Magic Cards: A new augmented-reality approach. IEEE Computer Graphics and Applications, 33(1), 12-19. doi: 10.1109/MCG.2012.94
Elbasiouny, E. M., Medhat, T., Sarhan, A., & Eltobely, T. E. (2011). Stepping into augmented reality. International Journal of Networked Computing and Advanced Information Management, 1(1), 40-47.
Gervautz, M., & Schmalstieg, D. (2012). Anywhere interfaces using handheld augmented reality. Computer, 45(7) 26-31. doi: 10.1109/MC.2012.72
Hecht, D.L. (1994). Embedded data glyph technology for hardcopy digital documents. SPIE Color Hard Copy and Graphic Arts III, 341-352.
Hecht, D.L. (2001). Printed embedded data graphical user interfaces. Computer, 34(3), 47–55.
Ibáñez, M. B., Serio, Á. D., Villarán, D., & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality:Impact on flow student experience and educational effectiveness. Computers & Education, 71(1), 1–13. doi: 10.1016/j.compedu.2013.09.004
Kato, H., & Kato, T. (2011, Jan.). A marker-less augmented reality based on fast fingertip detection for smart phones. Paper presented at the meeting of IEEE Consumer Electronics 2011, Las Vegas, NV. doi: 10.1109/ICCE.2011.5722498
Lee, C., Rincon, G. A., Meyer, G., Höllerer, T., & Bowman, D. A. (2013). The effect of visual realism on search tasks in mixed reality simulation. IEEE Transactions on Visualization and Computer Graphics, 19(4), 547-556. doi: 10.1109/TVCG.2013.41
Margetis, G., Zabulis, X., Koutlemanis, P., Antona, M., & Stephanidis, C. (2013). Augmented interaction with physical books in an Ambient Intelligence learning environment. Multimedia Tools and Applications, 67(2), 473-495.
Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information Systems, E77-D(12), 1321-1329.
Nagashima, H., & Saito, K. (2004). New Security System for ID Certificates in IT Society, Optical Security and Counterfeit Deterrence Techniques IV, Proc. of SPIE, 5310, 142-150.
Navab, N., Blum, T., Wang, L., Okur, A., & Wendler, T. (2012). First deployments of augmented reality in operating rooms. Computer, 45(7), 48-55. doi: 10.1109/MC.2012.75
Park, H., & Park, J. I. (2010). Invisible marker-based augmented reality. International Journal of Human-Computer Interaction, 26(9), 829-848. doi: 10.1080/10447318.2010.496335
Rudolf, M., Koren, T., & Žiljak-Vujić, J. (2012). New postage stamp design with tone gradation in infrared design technology. ACTA Graphica Revija Za Graficku Tehnologiju Inzinjerstvo I Dizajn Journal, 23(3-4), 57-64.
Sakuma, H., Yamabe, T., & Nakajima, T. (2012, Sep.). Enhancing traditional games with augmented reality technologies. Paper presented at the 2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing, Fukuoka, Japan. doi: 10.1109/UIC-ATC.2012.95
Ulichney, R. (1987). Digital Halftoning, MIT Press, Cambridge, MA.
Wang, H. C., Liu, W. H., Chang, C. L., & Chen, Y. H. (2008, Dec.). Design of halftone-based AR markers under infrared detection. Paper presented at the meeting of Computer Science and Software Engineering, Wuhan, Hubei. doi: 10.1109/CSSE.2008.1391
Wang, H.C., Lee, W.P.H., Liang, F.J. (2010). An interactive concert program based on infrared watermark and audio synthesis. ArtsIT 2009, Lecture Notes in Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (LNICST), 30, 48–55.
Wojciechowski, R., & Cellary, W. (2013). Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers & Education, 68(1), 570-585. doi: 10.1016/j.compedu.2013.02.014
Yamabe, T., & Nakajima, T. (2013). Playful training with augmented reality games-case studies towards reality-oriented system design. Multimedia Tools and Applications, 62(1), 259-286. doi: 10.1007/s11042-011-0979-7