簡易檢索 / 詳目顯示

研究生: 蔡昕澔
Cai, Sin-Hao
論文名稱: 具深度學習之數位全像顯微系統於玻璃基板瑕疵檢測
Defect inspection of glass substrate in digital holographic microscope with deep learning
指導教授: 鄭超仁
Cheng, Chau-Jern
杜翰艷
Tu, Han-Yen
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 50
中文關鍵詞: 深度學習全像術瑕疵檢測玻璃基板摺積神經網路
英文關鍵詞: Deep Learning, Holography, Defect Inspection, Glass Substrate, Convolutional Neural Network
DOI URL: http://doi.org/10.6345/NTNU201900929
論文種類: 學術論文
相關次數: 點閱:288下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討運用深度學習在玻璃基板瑕疵檢測的技術及利用數位全像顯微系統得到玻璃基板的複數影像進行瑕疵檢測,透過全像術取得玻璃基板的光學繞射資訊,其中複數影像包含振幅資訊及相位資訊,用深度學習進行學習背景、灰塵、刮痕、污漬、棉絮及水痕的振幅資訊及相位資訊之特性,更進一步探討各種瑕疵之間的差異、特性及辨識結果。在全像術和深度學習的運用,本研究會探討調整參數及改進流程達到檢測系統的辨識正確率最大化,以及影像校正方面使得可以得到品質穩定的複數影像,以利未來可以推廣到透過數位全像顯微系統擷取其他材料的光場資訊進行檢測,增加未來應用層面的潛力。

    We present an inspection method based on deep learning for defect classification of glass substrate by using complex wavefronts measurement in digital holographic microscopy. The complex image contains the amplitude and phase. The proposed inspection performed on convolutional neural network can achieve high accuracy of classifying defects, such as dust, crack , fiber, stain and watermark, on the glass substrate. We will adjustment parameters and the image correction to obtain a stable image with stable quality, which has more potential in application in the future.

    論文摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1 玻璃瑕疵檢測發展與現況 1 1.2 深度學習技術簡介 2 1.3 研究動機與目的 3 1.4 論文架構 5 第二章 基本理論 6 2.1 數位全像顯微系統 6 2.1.1 工作原理 6 2.1.2 系統架構 7 2.1.3 全像片的數值重建 7 2.2 深度學習 9 2.2.1 摺積神經網路 9 2.2.2 深度學習模型 11 2.2.3 深度學習階層 14 第三章 深度學習於玻璃基板瑕疵檢測 17 3.1 影像校正 18 3.2 瑕疵複數影像特性 26 3.3 資料擴增 26 3.4 瑕疵偵測 28 3.5 深度學習模型訓練 31 3.6 驗證與分析 35 第四章 實驗結果與分析討論 36 4.1 實驗環境 36 4.2 智慧型玻璃基板瑕疵檢測效能 38 4.2.1 瑕疵分類效能評估 39 4.2.2 資料擴增效能評估 42 第五章 結論與未來展望 45 參考文獻 47

    [ 1 ] Y. Jin, Z. Wang, L. Zhu and J. Yang, "Research on in-line glass defect inspection technology based on Dual CCFL," Proc. Engineering, 1797-1801 (2011).
    [ 2 ] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner. “Gradient-based learning applied to document recognition,” Proc. IEEE, 2278-2324 (1998).
    [ 3 ] M.A. Hearst ; S.T. Dumais ; E. Osuna ; J. Platt ; B. Scholkopf, “Support vector machine,” IEEE Intelligent Systems 3, 18-28 (1998).
    [ 4 ] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," Proc. NIPS, 1097-1105 (2012).
    [ 5 ] R. Girshick, J. Donahue, T. Darrell, J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," CVPR, 580-587 (2014).
    [ 6 ] R. Girshick, "Fast R-CNN," ICCV, 1440-1448 (2015).
    [ 7 ] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," NIPS, 1137-1149 (2015).
    [ 8 ] T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223, (1998).
    [ 9 ] I. Yamaguchi, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
    [ 10 ] P. Guo and A. J. Devaney, “Digital microscopy using phase-shifting digital holography with two reference waves,” Opt. Lett. 29, 857-859 (2004).
    [ 11 ] V. Kebbel, Hans-Jürgen Hartmann, Werner P. O. Jüptner, “Application of digital holographic microscopy for inspection of microoptical components,” Proc. SPIE 4389, 189-198 (2001).
    [ 12 ] V. Kebbel, J. Müller, W. P. O. Jüptner, “Characterization of aspherical micro-optics using digital holography: improvement of accuracy,” Proc. SPIE 4778, 188-197 (2002).
    [ 13 ] V. Kebbel, H.-J. Hartmann, W. P. 0. JUptner, “Characterization of micro-optics using digital holography,” Proc. SPIE 4101, 477-487 (2000).
    [ 14 ] F. Charrière, J. Kühn, T. Colomb “Characterization of microlenses by digital holographic microscopy,” Appl Opt. 45, 829-835 (2006).
    [ 15 ] T. Colomb, E. Cuche, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851-863 (2006).
    [ 16 ] J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006).
    [ 17 ] E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [ 18 ] G. Pedrini and H. J. Tiziani “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489-4496 (2002).
    [ 19 ] L. Martínez-León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977-3984 (2005).
    [ 20 ] S. Tamano, Y. Hayasaki, and N. Nishida, “Phase-shifting digital holography with a low-coherence light source for reconstruction of a digital relief objecthidden behind a light-scattering medium,” Appl. Opt. 45, 963-969 (2006).
    [ 21 ] G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherencegating in spatiotemporal digital holography,” Opt. Lett. 25, 212-214 (2000).
    [ 22 ] P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806–1812 (2005).
    [ 23 ] L. Yu and Myung K. Kim, “Wavelength scanning digital interference holography for tomographic three dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005).
    [ 24 ] F. Charrière, A. Marian, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178-180 (2006).
    [ 25 ] U. Schnars, Werner P O J¨uptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol., 13, R85–R101 (2002).
    [ 26 ] D. Gabor, Nature 161, 777–778 (1948).
    [ 27 ] K. He, X. Zhang, S. Ren and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual recognition,” ECCV, (2014). [ 28 ] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition.” ICLR, (2015).
    [ 29 ] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recognition,” CVPR, (2016).
    [ 30 ] P. Viola and M. J. Jones, “Robust Real-Time Face Detection,” International Journal of Computer Vision, 57(2), 137-154 (2003).

    無法下載圖示 本全文未授權公開
    QR CODE