簡易檢索 / 詳目顯示

研究生: 丁光明
Kwang-Ming Ding
論文名稱: 修飾矽膠之擴散反射式紅外光表面光譜研究
Diffuse Reflectance Infrared Transform Spectroscopy(DRIFTS) Study of Modified Silica Gel Surface
指導教授: 楊永華
Yang, Yong-Hwa
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 112
中文關鍵詞: 修飾矽膠擴散反射式紅外光譜表面光譜
英文關鍵詞: modified silica gel, DRIFTS, surface spectroscopy
論文種類: 學術論文
相關次數: 點閱:362下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本研究以矽膠為基質,研製聚(2-甲基丙烯四級鏻鹽)的陰離子交換劑,以擴散反射紅外光譜DRIFTS (Diffuse Reflectance Infrared Fourier Transform Spectroscopy)鑑定矽膠表面特殊官能基振動吸收光譜,如:Si-O-Si、C=C、Si-C、-NH2,進而建立迅速且有高度再現性的定量分析法。
    本研究探討改變矽膠粒徑大小對光譜的影響,發現粒徑越大,光譜精細結構(fine structure)不易見,而且無法獲致獨立吸收峰;小粒徑10mm矽膠做光譜分析為最佳,能獲得有效定性定量資訊。相較於穿透式紅外光譜,DRIFT光譜可明顯觀察矽膠表面性質。矽膠基質與KBr經由不同百分比例混合,光譜能獲得高定量線性結果。本研究法解析度設定以2cm-1獲得的光譜,最有利於定量分析。研究發現矽膠表面羥基與修飾劑反應時,於高濃度修飾劑下,修飾鍵結量與修飾劑成正比;定量修飾劑下亦隨反應溫度而成正比修飾反應。對反應時間作圖,發現初始時間,修飾反應速率明顯較快。矽烷耦合劑的聚合可與修飾矽膠的光譜進行比對,可判斷不同的官能基環境。在修飾矽膠表面做長鏈的聚合反應,光譜上觀察到明顯消失的吸收峰可做為聚合反應的證明。

    Abstract
    In this study, DRIFT (Diffuse Reflectance Infrared Fourier Transform Spectroscopy) was applied on copolymerized silica-based ion-exchanger containing quaternary phosophonium salts. The rapid, high repeatable qualitative and quantitative analysis model was constructed to explain the surface spectra.
    For silica gel samples, finer particle size caused less severe spectral distortion and more effective analyzing results. Comparing with the conventional transmittance spectra, more accurate surface quantitative characters can be obtained by DRIFT method. By pretreating silica gel with different amount of KBr, the exact value for absorption yielded an excellent linear correlation between Kubelka-Munk function and the sample concentration. The high-resolution setting in DRIFTS was attributed to these serial spectra. Quantitative measuring the peak intensities, it was proportioned to the different reaction temperatures and various amount of coupling agents modified on silica gel. From the spectra of poly-coupling agents, peak absorption and shifts can be observed from force field effect. The kinetic results showed that the modified reactions were faster at initial time and assumed first order reaction.

    目錄 中文摘要 IV 英文摘要 V 第一章 緒論 1 1-1 管柱材料簡介 1 1-2 散射式反射紅外光譜儀簡介 3 1-3 矽膠基質表面研究 9 1-4 DRIFT光譜理論 11 1-4-1 Kubelka-Munk Theory 11 1-4-2 Radiative Transfer Theory 12 1-5 DRIFT光譜調校與設置 16 1-5-1調校光徑的直進性 16 1-5-2 背景光譜 17 1-5-3 不同樣品型式的DIRFT光譜運用 18 1-5-4 DRIFT光譜的定量運用 19 1-5-5 檢量線的繪製技巧 19 1-5-6 注意光譜判定上的陷阱 20 1-5-7 光譜再的現性 20 1-5-8 影響DRIFT光譜的主要因素 21 1-5-8a 樣品粒徑大小 21 1-5-8b 入射光角度 22 1-5-8c 不同的分散基質 22 1-5-8d 填裝樣品壓力 23 第二章 實驗部分 24 2-1 藥品與儀器裝置 25 2-2 修飾矽膠製備 30 2-2-1 (VTS)修飾矽膠之製備 30 2-2-2 (CTS)修飾矽膠之製備 31 2-2-3 (APS)修飾矽膠之製備 32 2-2-4 α-甲基丙烯醯胺修飾矽膠之製備 33 2-2-5 聚合修飾矽膠之製備 34 2-2-6 TBP修飾矽膠之製備 36 2-3 修飾劑聚合物之製備 36 2-4 不同溫度之修飾反應 37 第三章 DRIFT光譜分析 38 3-1 基本光譜 38 3-1-1裝置設定對光譜的影響 38 3-1-2 矽膠粒徑大小對光譜的影響 41 3-1-3 不同的基質混合比例對光譜的影響 43 3-1-4 矽膠的吸收峰位置 46 3-1-5a VTS修飾矽膠吸收峰分析 49 3-1-5b 聚VTS吸收峰的比較 52 3-1-6a CTS修飾矽膠吸收峰分析 58 3-1-6b 聚CTS吸收峰的比較 58 3-1-7a APS修飾矽膠吸收峰分析 59 3-1-7b聚APS吸收峰的比較 62 3-1-8 α-甲基丙烯醯胺修飾矽膠 67 3-2 與穿透式FT-IR做比較 67 3-3 扣除光譜 71 3-3-1 扣除矽膠基質光譜 71 3-4 依不同的合成量所做的光譜定量 75 3-5 不同修飾反應時間所得光譜 89 3-5-1 VTS反應時間 89 3-5-2 APS反應時間 89 3-6聚合反應時間之光譜 96 3-6-1 P1-Br 96 3-6-2 P2-Br 96 3-6-3 P4-Br 96 3-7 溫度對修飾反應的影響 96 第四章 結論 106 參考資料 107

    Reference
    1. Gjerde, D. T.; Fritz J.S.; Shmuckler, G. J. Chromatogr. 1979, 509, 186. "Anion Chromatography with Low-Conductivity Eluents".
    2. Lee, D. P. J. Chromatogr. Sci. 1984, 22, 327. "A New Anion Exchange Phase for Ion Chromatography".
    3. Duval, D.L.; Fritz, J. S. J. Chromatogr. 1984, 295, 89. "Coated Anion-Exchanger Resins for Ion Chromatography".
    4. Haddad, P. R.; Jackson, P. E. J. Chromatogr. 1985, 346, 139. "Performance Characteristics of Some Commercially Avaliable Low-Capacity Anion-Exchange Columns Suitable for Non-Suppressed Ion Chromatography".
    5. Venton, D. L.; Gudipati, E. Silanes, Surfaces, and Interfaces. 1986, p 73. "Entrapment of Proteins Using Organo Functionalized Polysilane Copolymers".
    6. Gjerde, D. T.; Jandik, P.; Anderson, R. M.; Advance in Ion Chromatogr., Vol. 2, p. 169.
    7. Den, T. S.; Kettrup, A. Silanes, Surfaces, and Interfaces. 1986, p 403. "Synthesis, Characterization and Analytical Application of New Stationary Phases with Aromatic Ring Systems as the Therminal Group".
    8. Scott, R. P. W.; Silica Gel and Bonded Phases. Chap. 4 "The Silica Gel Surface".
    9. Scott, R. P. W.; Silica Gel and Bonded Phases. Chap. 7 "An Introduction to Bonded Phases".
    10. Ishida, H.; Koenig, J. L. J. Colloid Interface Sci. 1978, 64, 565. "Fourier Transform Infrared Spectroscopic Study of Structure of Silane Coupling Agent on E-Glass Fiber".
    11. White, R. L.; Nair, A. Appl. Spectrosc. 1990, 44, 69. "The Use of Diffuse Reflectance FT-IR Spectroscopy for the Quantitative Analysis of a Number of Silanized Kaolin Clays".
    12. Pascal Van Der Voort; Gillis-D'Hamers, I; Vansant, E, F; Vrancken, K. C. J. Chem. Faraday Trans. 1991, 87, 3899. "Effect of Porosity on the Distribution and Reactivity of Hydroxyl Groups on the Surface of Silica Gel".
    13. Casteleleyn, E; Possemiers, K; Vansant, E, F; Vrancken, K. C. J. Chem. Faraday Trans. 1993, 89, 2037. "Modelling of the Reaction-Phase Interaction of Aminopropyltriethoxysilane with Silica Gel".
    14. Graf, R. T.; Koenig, J. L.; Ishida, H. Anal. Chem. 1984, 56, 773. "Characterization of Silane-Treated Glass Fibers by Diffuse Reflectance Fourier Transform Spectroscopy".
    15. (a) Koenig, J. L. Silanes, Surfaces, and Interfaces. 1986, p 43. "Fourier Transform Infrared Spectroscopic Study of Interfaces". p 525. "Identification of Covalent Bonds Between Substituted Silanes and Inorganic Surfaces". (b) Chiang, C-H.; Ishida, H.; Koenig, J. L. J. Colloid Interface Sci. 1980, 74, 396. "The Structure of g-Aminopropyltriethoxysilane on Glass Surface". (c) McKenzie, M. T.; Culler, S. R. Appl. Spectrosc. 1984, 38, 786. "Applications of Diffuse ReflectanceFT-IR to the Characterization of an E-Glass Fiber/g-APS". (d) Culler, S. R.; Ishida, H.; Koenig, J. L. J. Colloid Interface Sci. 1985, 106, 334. "Structure of Silane Coupling Agents Adsorbed on Silicon Powder". (e) Urban M. W.; Koenig, J. L. Appl. Spectrosc. 1986, 40, 513. "Determination of the Orientation of Silanes on Silica surface by Fourier Transform Photoacoustic Spectroscopy".
    16. Willey, R. R. Appl. Spectrosc. 1976, 30, 593.
    17. Fulller, M. P.; Griffiths, P. R. Anal. Chem. 1978, 50, 1906. "Diffuse Reflectance Measurements by Infrared Fourier Transform Spectroscopy".
    18. Davydov, V. Y.; Zhuravlev, L. T.; Kiselev, A. V. Russ. J. Phys. Chem. 1964, 38, 11.
    19. Davydov, V. Y.; Kiselev, A. V.; Zhuravlev, L. T. Trans. Faraday Soc. 1964, 60, 2254.
    20. Snyder, R. L.; Ward, J. W. J. Phys. Chem. 1966, 70, 3941. "The surface Structure of Porous Silicas".
    21. Tsuchiya, I. J. Phys. Chem. 1982, 86, 4107. "Infrared Spectroscopy Study of Hydroxyl Groups on Silica Gel Surface".
    22. Evans, B.; White, T. E. J. Catal. 1968, 11, 336.
    23. Murthy, R. S. S.; Leyden, D. E. Anal. Chem. 1986, 58, 1228. "Quantitative Determination of 3-aminopropyltriethoxysilane on Silica Gel Surface Using DRIFTS".
    24. Engelhardt, H.; Low, H.; Eberhardt, W.; Manbb, M. Chromatographia. 1989, 27, 533.
    25. Kibbey, C. E,; Meyerhoff, M.E. Anal. Chem. 1993, 65, 2189-2196." Preparation and Characterization of Covalently Bound Tetraphenylporphyrin-Silica Gel Stationary Phases for Reversed-Phase and Anion-Exchange Chromatography".
    26. Sessler, J. L.; Kral, V.; Genge, J. W.; Thomas, R. E.; Iverson, B. L. Anal. Chem. 1998, 70, 2516-2522. "Anion Selectivity of a Sapphyrin-Modified Siliac Gel HPLC Support".
    27. (a) Kubelka, P.; Munk, F. Z. Tech. Phys. 1931, 12, 593. (b) Kubelka, P.; Munk, F. J. Opt. Soc. Am. 1948, 38, 448.
    28. Fuller, M. P.; Griffiths, P. R. Anal. Chem. 1978, 50, 1906. "Diffuse Reflectance Measurement by Infrared Fourier Transform Spectroscopy".
    29. Chandrasekher, S. Radiative Transfer. Dover Publications; New York, 1960.
    30. Kaviany, M. Principles of Heat Transfer in Porous Media; Springer-Verlag: New York, 1991.
    31. Van der Hulst, H. C. Multiple Light Scattering; Academic Press: New York, 1980; Vol. 2.
    32. McKellar, B.; Box, M. A. J. Atmos. Sci. 1981, 38, 1063.
    33. Kaganer, M. G. Opt. Spectrosc. 1969, 26, 240-242.
    34. Berntsson, O.; Burger, T.; Folestad, S.; Danielsson, L. G.; Fricke, J. Anal. Chem. 1999, 71, 617.
    35. Kortum, G. Reflectance Spectroscopy; Springer: Heidelberg, 1969.
    36. Kortum, G.; Braun, W. Z. Phys. Chem. (Munich) 1966, 48, 282.
    37. Reinecke, D.; Jansen, A.; Fister, F.; Shernau, U. Anal. Chem. 1988, 60, 1221."Quantitative Determination of Organic Compounds by DRIFTS".
    38. Silverstein, R. M. Spectrometric Identification of Organic Compound.
    39. Vidrine, D. W., Fourier Transform Infrared Spectroscopy, Vol. 3, Ferraro, J. R. and Basile, L. J., Eds., Academic Press, New York, 1982, chap. 4.
    40. Compton, S. V.; Compton D. A. C. Quantitative Analysis - Avoiding Common Pitfalls. Practical Sampling Techniques for Infrared Analysis. 1993. Edited by Coleman P. B.
    41. Porro, T. J.; Pattacini, S. C. Appl. Spectrosc. 1990, 44, 1170. "The Use of Diffuse Reflection FT-IR Spectroscopy for the Quantitative Analysis of a Number of Silanized Kaolin Clays".
    42. Messerschmidt, R. G. Appl. Spectrosc. 1985, 39, 737.
    43. Brimmer, P. J.; Griffiths, P. R.; Harrick, N. J. Appl. Spectrosc. 1986, 40, 258. "Angular Dependence of Diffuse Reflectance Infrared Spectra Part I: FT-IR Spectrogoniphotometer".
    44. Brackett, J. M.; Azarrago, L. V.; Castles, M. A.; Rogers, L. B. Anal. Chem. 1984, 59, 415.
    45. Chalmers, J. M.; Mackenzie, M. W. Advances in Applied Fourier Transform Infrared Spectroscopy. Mackenzie, M. W. Ed., 1988. Great Britain. Chap 4.
    46. Yeboah, S. A.; Wang, S. H.; Griffiths, P. R. Appl. Spetrosc. 1984, 38, 259.
    47. Vrancken, K. C.; Coster, L. D.; Van Der Voort; Grobet, P. J.; Vansant, E. F. J. Colloid Interface Sci. 1995, 170, 71. "The Role of silianols in the Modification of the Silica Gel with Aminosilanes".
    48. Tsuchiya, I. J. Phys. Chem. 1982, 86, 4107. "Infrared Spectroscopy Study of Hydroxyl Groups on Silica Gel Surface".
    49. Socrates, G. Infrared Characteristic Group Frequencies. 1980. John Wiley & Sons.
    50. Ishida, H.; Koenig. J. L. J. Colloid Interface Sci. 1978, 59, 555. "Fourier Transform Infrared Spectroscopic Study of the Silane Coupling Agent/Porous Interface".
    51. Chiang, C. H.; Ishida, H.; Koenig, J. L. J. Colloid Interface Sci. 1980, 74, 396. " The Structure of Aminopropyltriethoxysilane on Glass Surface".
    52. Shimizu, I.; Okabayashi, H.; Taga, K.; Nishio, E.; O'Connor, C. Vib. Spectrosc. 1997, 14, 113. "Diffuse Reflectance Infrared Fourier Transform Spectral Study of the Thermal And adsorbed-Water Effects of a 3-aminopropyltriethoxysilane Layer Modifie onto the Surface of Silica Gel".
    53. Waddell, T. G.; Leyden, D. E.; DeBello, M. T. J. Am. Chem. Soc. 1981, 103, 5303.
    54. Shimizu, I.; Yoshino, A.; Okabayashi, H.; Nishio, E.; O'Connor, C. J. Chem. Soc. Faraday Trans. 1997, 93, 1971. "Kinetic of Interaction of 3-Aminopropyltriethoxysiliane And Silica Gel Surface Using Elemental Analysis And Diffuse Reflectance Infrared Fourier Transform Spectra".

    QR CODE