簡易檢索 / 詳目顯示

研究生: 陳啟承
Chen, Chi-Cheng
論文名稱: 基於交互式粒子群演算法之階層式模糊控制應用於V2H電能管理系統
Hierarchical Fuzzy Control with Interactive Particle Swarm Optimization Algorithm Applied to V2H Energy Management System
指導教授: 陳瑄易
Chen, Syuan-Yi
口試委員: 陳瑄易
Chen, Syuan-Yi
陳正一
Chen, Cheng-I
劉祐任
Liu, Yu-Jen
口試日期: 2024/11/08
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 107
中文關鍵詞: 基本規則庫控制模糊控制粒子群演算法細菌覓食演算法能量管理系統微電網直流-直流轉換器
英文關鍵詞: Rule-based control strategy, Fuzzy control, Particle swarm algorithm, Bacteria foraging algorithm, Energy management system, Microgrid, DC-DC converter
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401972
論文種類: 學術論文
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球能源轉型的加速,微電網作為一種靈活性高的小型分散式電力系統,其在促進能源效率與穩定電力供應的潛力正逐步被發掘。本研究為發展一套具備電動車雙向充放電應用的家庭微電網系統,並著重於考量外在環境影響如溫度或雨量所產生的車輛運行能耗與微電網當前電力狀態之電能管理控制策略,旨在提出一種高效率與可持續性的電能管理系統(Energy Management System, EMS)控制架構,以支持電動車和微電網之間的能量協調。本研究中所建立的微電網系統包含電動車系統、太陽能發電系統、儲能系統、市電與家庭負載,並搭配多種控制策略包含本研究提出之階層式交互式粒子群模糊控制,針對不同的情境能更適應性的實現電能管理的效果,藉以達到最佳化用電之目標。
    本研究以Matlab/Simulink軟體實現,實驗平台包含直流-直流轉換器、三相變流器、Y-Y三相變壓器、電子負載、可程控電源供應器、搭載鋰電池模組之儲能系統與PC控制器,透過PC控制器進行實虛功率控制以及電能管理控制。觀察非夏季實驗結果,在用電量方面相較於階層式模糊基本規則庫控制策略,階層式粒子群模糊控制策略可改善5.5%;階層式交互式粒子群模糊控制策略可改善11.2%,從而驗證本研究提出之階層式交互式粒子群模糊控制策略能有效應用於微電網電能管理系統。

    As the global energy transition accelerates, microgrids, as flexible and decentralized power systems, are increasingly recognized for their potential to enhance energy efficiency and ensure stable power supply. This study aims to develop a home microgrid system incorporating bidirectional charging and discharging applications for electric vehicles. It focuses on considering external environmental factors, such as temperature and rainfall, which affect vehicle energy consumption, and the current power state of the microgrid to design an energy management control strategy. The goal is to propose an efficient and sustainable energy management system (EMS) control framework that coordinates energy flow between electric vehicles and the microgrid.
    The microgrid system developed in this study includes an electric vehicle system, a solar power generation system, a battery storage system, the utility grid, and household loads. The system is designed to work with various control strategies, including the proposed hierarchical interactive particle swarm fuzzy control method, which adapts to different scenarios to achieve optimal energy management.
    The system is implemented using MATLAB/Simulink, and the experimental platform includes a DC-DC converter, a three-phase inverter, a Y-Y three-phase transformer, an electronic load, a programmable power supply, an energy storage system equipped with lithium battery modules, and a PC controller. The PC controller handles real and reactive power control as well as energy management control. Experimental results conducted outside the summer season show that, in terms of power consumption, compared to the hierarchical fuzzy rule-based control strategy, the hierarchical particle swarm fuzzy control strategy improves by 5.5%, and the hierarchical interactive particle swarm fuzzy control strategy improves by 11.2%. This verifies that the proposed hierarchical interactive particle swarm fuzzy control strategy is effectively applicable to energy management systems in microgrids.

    謝辭 i 摘要 ii ABSTRACT iii 目次 v 表次 viii 圖次 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究目的 6 1.4 研究架構 7 第二章 分散式電源與微電網系統介紹 8 2.1 電力轉換器架構 8 2.1.1 DC / DC轉換器 9 2.1.2 DC / AC轉換器 15 2.2 鋰電池儲能系統 17 2.2.1 鋰電池等效電路模型 17 2.2.2 鋰電池放電狀態 18 2.2.3 鋰電池充電狀態 19 2.3 太陽能發電系統 21 2.4 電動車系統 23 2.4.1 車輛行車動態模型 23 2.4.2 車輛對電網之情境模式定義 26 第三章 市電端功率計算與併網控制 28 3.1 三相交流系統分析 28 3.1.1 兩相靜止坐標軸轉換 29 3.1.2 同步旋轉坐標軸轉換 30 3.2 市電端功率計算與控制 31 第四章 最佳化V2H電能管理策略 34 4.1 階層式模糊基本規則庫控制 34 4.1.1 環境能耗函數定義 34 4.1.2 基於模糊控制設計電動車充放電行為 37 4.1.3 階層式模糊基本規則庫控制之電能管理策略 41 4.2 階層式粒子群模糊控制 45 4.2.1 粒子群演算法介紹 46 4.2.2 階層式粒子群模糊控制之電能管理策略 48 4.3 階層式交互式粒子群模糊控制 51 4.3.1 細菌覓食演算法介紹 51 4.3.2 交互式粒子群演算法介紹 54 4.3.3 階層式交互式粒子群模糊控制之電能管理策略 56 第五章 最佳化V2H電能控制策略模擬分析 60 5.1 模擬參數設計 60 5.2 階層式模糊基本規則庫控制策略模擬結果 64 5.3 階層式粒子群模糊控制模擬結果 66 5.4 階層式交互式粒子群模糊控制模擬結果 70 5.5 模擬結果討論 72 第六章 實驗平台介紹與實作結果討論 76 6.1 硬體架構介紹 76 6.2 實驗平台建模控制 85 6.3 實驗結果分析 88 6.3.1 電網測試驗證 89 6.3.2 階層式模糊基本規則庫控制策略實驗結果 90 6.3.3 階層式粒子群模糊控制策略實驗結果 93 6.3.4 階層式交互式粒子群模糊控制策略實驗結果 95 6.4 實驗結果分析 97 第七章 結論與未來展望 101 7.1 結論 101 7.2 未來展望 102 參考文獻 103

    [1]I.E.A. (IEA), “Net Zero by 2050.”
    [2]M. H. Saeed, W. Fangzong, B. A. Kalwar and S. Iqbal, “A review on microgrids’ Challenges & Perspectives,” IEEE access, vol. 9, pp. 166502-166517, 2021.
    [3]“台達智慧能源解決方案,” https://blog.deltaww.com/en/energyinfrastructuresolutions-en/products/boost-energy-efficiency-from-power-generation-to-consumption-delta-smart-energy-solutions/
    [4]K. H. Tan, F. J. Lin, C. M. Shih and C. N. Kuo, “Intelligent control of microgrid with virtual inertia using recurrent probabilistic wavelet fuzzy neural network,” IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 7451-7464, 2020.
    [5]E.I.A. (EIA), “Solar and battery storage to make up 81% of new U.S. electric-generating capacity in 2024.”
    [6]M. A. Hoummadi, H. A. Aroussi, B. Bossoufi, M. Karim, S. Mobayen, and A. Zhilenkov, “A review of constraints and adjustable parameters in microgrids for cost and carbon dioxide emission reduction,” Heliyon, vol. 10, 2024.
    [7]A. Merabet, A. A. Durra, and E. El-Saadany, “Energy management system for optimal cost and storage utilization of renewable hybrid energy microgrid,” Energy Conversion and Management, vol. 252, pp. 115116, 2022.
    [8]B. Jeddi, Y. Mishra, and G. Ledwich, “Dynamic programming based home energy management unit incorporating PVs and batteries,” in 2017 IEEE Power & Energy Society General Meeting, pp. 1-5, 2017.
    [9]Q. Deng, X. Gao, H. Zhou, and W. Hu, “System modeling and optimization of microgrid using genetic algorithm,” in 2011 2nd International Conference on Intelligent Control and Information Processing, pp. 540-544, 2011.
    [10]H. T. Dinh, J. Yun, D. M. Kim, K. H. Lee, and D. Kim, “A home energy management system with renewable energy and energy storage utilizing main grid and electricity selling,” IEEE Access, vol. 8, pp. 49436-49450, 2020.
    [11]I. N. Trivedi, M. Bhoye, R. H. Bhesdadiya, P. Jangir, N. Jangir, and A. Kumar, “An emission constraint environment dispatch problem solution with microgrid using whale optimization algorithm,” National Power Systems Conference, pp. 1-6, 2016.
    [12]S. Paul, and N. P. Padhy, “Real-time bilevel energy management of smart residential apartment building,” IEEE Transactions on Industrial Informatics, vol. 16, no. 6, pp. 3708-3720, 2020.
    [13]H. M. Fekry, A. A. Eldesouky, A. M. Kassem, and A. Y. Abdelaziz, “Power management strategy based on adaptive neuro fuzzy inference system for AC microgrid,” IEEE Access, vol. 8, pp. 192087-192100, 2020.
    [14]D. van der Meer, G. R. Chandra Mouli, G. Morales-España Mouli, L. R. Elizondo, and P. Bauer, “Energy management system with PV power forecast to optimally charge EVs at the workplace,” IEEE Transactions on Industrial Informatics, vol. 14, no. 1, pp. 311-320, 2018.
    [15]H. N. T. Nguyen, C. Zhang, and M. A. Mahmud, “Optimal coordination of G2V and V2G to support power grids with high penetration of renewable energy,” IEEE Transactions on Transportation Electrification, vol. 1, no. 2, pp. 188-195, 2015.
    [16]T. Yuchen, J. Zhong, and M. Bollen, “Aggregated optimal charging and vehicle-to-grid control for electric vehicles under large electric vehicle population,” IET Generation, Transmission & Distribution, vol. 10, pp. 2012-2018, 2016.
    [17]H. B. Sassi, Y. Mazzi, F. Errahimi, and N. Es-Sbai, “Power transfer control within the framework of vehicle-to-house technology,” International Journal of Electrical and Computer Engineering (IJECE), vol. 13, no. 4, pp. 3817-3828, 2023.
    [18]C. Parmar, and S. Tiwari, “Fuzzy logic based charging of electric vehicles for load management of microgrid,” 2020 5th International Conference on Communication and Electronics Systems (ICCES), pp. 1-7, 2020.
    [19]H. Zhao, Q. Wu, C. Wang, L. Cheng, and C. N. Rasmussen, “Fuzzy logic based coordinated control of battery energy storage system and dispatchable distributed generation for microgrid,” in Journal of Modern Power Systems and Clean Energy, vol. 3, no. 3, pp. 422-428, 2015.
    [20]J. Tan, and L. Wang, “Integration of plug-in hybrid electric vehicles into residential distribution grid based on two-layer intelligent optimization,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1774-1784, 2014.
    [21]D. W. Hart, and D. W. Hart, Power electronics: McGraw-Hill New York, 2011.
    [22]林長華,電力電子電路實務課程講義,國立台灣科技大學電機工程所,2023。
    [23]李承翰,應用於微電網之分散式能源管理智慧型控制策略,國立中山大學電機工程學系碩士論文,高雄市,2014。
    [24]S. M. Mousavi, and G. M. Nikdel, “Various battery models for various simulation studies and applications,” Renewable and Sustainable Energy Reviews, vol. 32, pp. 477-485, 2014.
    [25]X. Wang, H. He, F. Sun, and J. Zhang, “Application study on the dynamic programming algorithm for energy management of plug-in hybrid electric vehicles,” Energies, vol. 8, no. 4, pp. 3225-3244, 2015.
    [26]B. Bendib, H. Belmili, and F. Krim, “A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems,” Renewable and Sustainable Energy Reviews, vol. 45, pp. 637-648, 2015.
    [27]IRENA, “ Innovation Outlook:Smart Charging for Electric Vehicles 2019.”
    [28]羅祥瑜,基於強化式學習之複合電力電動機車能量管理系統,國立臺灣師範大學電機工程學系碩士論文,台北市,2022。
    [29]F. Tao, L. Zhu, Z. Fu, P. Si, and L. Sun, “Frequency decoupling-based energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle using fuzzy control method,” IEEE access, vol. 8, pp. 166491-166502, 2020.
    [30]A. S. Samad, S. Punya, and J. Ajitha, “Duplicate for three phase to two phase transformation,” American Journal of Sciences and Engineering Research, vol. 1, pp. 166491-166502, 2018.
    [31]C. J. O’Rourke, M. M. Qasim, M. R. Overlin, and J. L. Kirtley, “A geometric interpretation of reference frames and transformations: dq0, Clarke, and Park,” IEEE Transactions on Energy Conversion, vol. 34, no. 4, pp. 2070-2083, 2019.
    [32]S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Three-phase PLLs: A Review of Recent Advances,” IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 1894-1907, 2017.
    [33]R. Teodorescu, M. Liserre, and P. Rodriguez, Grid Converters for Photovoltaic and Wind Power Systems: John Wiley & Sons, 2011.
    [34]賴煜凱,應用於三相不平衡負載電流補償之智慧型太陽光電發電系統,國立中央大學電機工程學系碩士論文,桃園縣,2018。
    [35]S. Rastani, T. Yüksel, and B. Çatay, “Effects of ambient temperature on the route planning of electric freight vehicles,” Transportation Research Part D: Transport and Environment, vol. 74, pp. 124-141, 2019.
    [36]J. Zhang, G. Song, D. Gong, Y. Gao, L. Yu, and J. Guo, “Analysis of rainfall effects on road travel speed in Beijing, China,” Institution of Engineering and Technology, vol. 12, no. 2, pp. 93-102, 2018.
    [37]L. Zhang, C. Sun, G. Cai, and L. H. Koh, “Charging and discharging optimization strategy for electric vehicles considering elasticity demand response,” eTransportation, vol. 18, pp. 100262, 2023.
    [38]陳品蓉,改良式黏菌演算法應用於微電網之能源管理系統,國立臺灣師範大學電機工程學系碩士論文,台北市,2023。
    [39]羅博政,針對水下環境之無線電力傳輸系統以粒子群演算法優化耦合線圈抗錯位能力之研究,國立臺灣海洋大學電機工程學系碩士論文,基隆市,2024。
    [40]H. A. Elaydi, and R. J. Al Ghamri, “Designing adaptive control based on bacteria foraging optimization,” Palestinian International Conference on Information and Communication Technology, pp. 89-97, 2017.
    [41]K. M. Passino, “Biomimicry of bacterial foraging for distributed optimization and control,” IEEE Control Systems Magazine, vol. 22, no. 3, pp. 52-67, 2002.
    [42]E. Sortomme, M. M. Hindi, S. D. J. MacPherson, and S. S. Venkata, “Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses,” IEEE Transactions on Smart Grid, vol. 2, no. 1, pp. 198-205, 2011.
    [43]“電動車行車型態效能與續航里程差異, ” https://feature.u-car.com.tw/feature/article/70636

    無法下載圖示 電子全文延後公開
    2029/11/22
    QR CODE