簡易檢索 / 詳目顯示

研究生: 謝幸樺
Hsin-Hwa Hsieh
論文名稱: 雙介面修飾之組合應用於反式聚合物太陽能電池之研究
Giant Enhancement of Inverted Polymer Solar Cells Efficiency by Manipulating Dual Interlayers with Integrated Approaches
指導教授: 李亞儒
Lee, Ya-Ju
陳永芳
Chen, Yang-Fang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 46
中文關鍵詞: 介面修飾表面電漿效應導電小分子
英文關鍵詞: interface modified, surface plasmon, conductive small molecules
論文種類: 學術論文
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出使用2-萘硫醇(2-Naphthalenethiol,2-NT)與金奈米粒子對主動層兩側之緩衝層做介面修飾,可提升含氧化鋅奈米柱(ZnO nanorod)之反式聚合物太陽能電池效率。2-NT用於對ZnO奈米柱進行表面鈍化處理以減少氧缺陷,這個結果使太陽能電池之開路電壓提高,2-NT亦給予電子一個明確的方向,使電子傳導至陰極的過程中復合的機率變小;而金奈米粒子,利用散射效果及區域性表面電漿共振效應(Localized Surface Plasmon Resonance, LSPR)提高整體元件的光子捕獲量及激子解離率,藉此提升光電流與填充因子。同時藉由兩種介面修飾可以進一步提升上述之效果,使整體元件達到更高的效率。
    本研究成功的整合製程與雙介面修飾法,元件經兩種方法修飾後之光轉換效率由2.02%提升至4.20%,其提升幅度將近200%,這是在ZnO結構之有機聚合物太陽能電池上之最高紀錄,也代表著對於高效率聚合物共混結構電池上開創了一種新的修飾方法。

    To modify the interface on buffer layer with 2-Naphthalenethiol(2-NT) and gold nanoparticles to improve efficiency of the inverted polymer solar cell containing Znic oxide (ZnO) nanorods structure is demonstrated. Here we use the 2-Naphthalenethiol(2-NT) and gold nanoparticles to modify the interlayer between active layer and electrode on both sides. 2-NT is used for passivation treatment on the surface of ZnO nanorods, to reduce the oxygen defects in ZnO nanorods and improve the open circuit voltage of the solar cell. 2-NT also provides a clear direction for electron to transport to cathode that reduce the probability of electron recombination. Introducing gold nanoparticles improved scattering effects and surface plasmon resonance (SPR). These two phenomenon increase the amount of captured photons and the probability of exciton dissociation lead to the enhancement of photocurrent and fill factor. Modifying both two buffer layers in two ways simultaneously can further improve the overall efficiency.
    The results of this study also shows that the dual interface modification in the manufacturing process is indeed feasible. In addition, the enhancement of photon conversion efficiency achieved nearly 200% after dual interface modification. This is the highest record for organic polymer solar cell with ZnO nanorod structure. It also represents that we demonstrate a novel method to modifying the polymer blend structure organic solar cell.

    1.Introduction 3 Reference 6 2.Theoretical Background 9 2.1The principle of solar cell 9  2.1.1Solar Spectrum 9  2.1.2Photovotaic effect 10  2.1.3Short Circuit Current 11  2.1.4Open Circuit Voltage 12  2.1.5Filling Factor&Efficiency 13  2.1.6Device Analysis 14  2.1.7 Mobility measurement by CELIV 14  2.1.8 Liftime measurement by OCVD 16  2.2Organic semiconductor 18 2.3Organic Solar cell structure 19  2.3.1Bilayer heterojunction 19  2.3.2Bulk heterojunction 21 Reference 22 3.Equipment and material Design 23 3.1Equipment 23  3.1.1Scanning electron microscopy 23  3.1.2Incident Photo-to-Current Efficiency 24  3.1.3Thermal evaporation 25  3.1.4Solar simulator 26 3.2Material Design 27  3.2.1ZnO nanowires 27  3.2.2Organic materials 28 Reference 30 4.Giant Enhancement of Inverted Polymer Solar Cells Efficiency by Manipulating Dual Interlayers with Integrated Approaches 31 4.1 Introduction 31 4.2 Experiment 32 4.3Device fabrication 32 4.4Characterization Details 33 4.5 Results and discussion 34 Reference 44 5.Conclusion 46

    Ch1
    [1] F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, Journal of Materials Chemistry 19 (2009) 5442–5451.
    [2] T. D. Nielsen, C. Cruickshank, S. Foged, J. Thorsen, and F. C. Krebs, Solar Energy Materials and Solar Cells 94 (2010) 1553–1571.
    [3] G. Li, R. Zhu, and Y. Yang, Nature Photonics 6 (2012) 153 – 161.
    [4] C .-Z. Li, H. -L. Yip, and A. K. -Y. Je, Journal of Materials Chemistry 22 (2012) 4161–4177.
    [5] C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds, and F. So, Nature Photonics 6 (2012) 115–120.
    [6] L. T. Dou, J. Gao, E. Richard, J. B. You, C. C. Chen, K. C. Cha, Y. J. He, G. Li, and Y. Yang, Journal of American Chemical Society 134 (2012) 10071–10079.
    [7] Y. F. Li, Accounts of Chemical Research 45(5) (2012) 723– 33 .
    [8] P. M. Beaujuge, and J. M. J. Fréchet, Journal of American Chemical Society 133 (2011) 20009 – 20029.
    [9] F. He, and L. P. Yu, Journal of Physical Chemistry Letter 2 (2011) 3102 – 3113.
    [10] G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Applied Physics Letters 88 (2006) 253503-1 – 253523-3.
    [11] C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, Applied Physics Letters 93 (2008) 193307-1 – 193307-3.
    [12] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, Applied Physics Letters 89 (2006) 233517-1 – 233517-3.
    [13] M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, and D.S. Ginley, Applied Physics Letters 89 (2006) 143517-1 – 143517-3.
    [14] F. Liu, Z.A. Page, V. V. Duzhko, T. P. Russell, and T. Emrick, Advanced Materials 25 (2013) 6868–6873.
    [15] Y. Zhou, F. Li, S. Barrau, W. Tian, O. Inganas, F.L. Zhang, Solar Energy Materials and Solar Cells 94 (2010) 497–500.
    [16] S. I. Na, T.S. Kim, S.H. Oh, J. Kim, S.S. Kim, and D.Y. Kim, Applied Physics Letters 97 (2010) 223305-1 – 223305-3.
    [17] L. Motiei, Y. Yao, J. Choudhury, H. Yan, T. J. Marks, M. E. van der Boom, and A. Facchetti, Journal of American Chemical Society 132 (2010) 12528–12530.
    [18] Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J.S. Huang, Nature Materials 10 (2011) 296–302.
    [19] Y. Zhu, X. Xu, L. Zhang, J. Chen, and Y. Cao, Solar Energy Materials and Solar Cells 97 (2012) 83 – 88.
    [20] F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, Applied Physics Letters 95 (2009) 013305-1 – 013305-3.
    [21] L. Lu, Z. Luo, T. Xu, and L. Yu, Nano Letters 13 (2013) 59 – 64.
    [22] X. Yang, C.-C. Chueh, C.-Z. Li, H.-L. Yip, P. Yin, H. Chen, W.-C. Chen, and A. K-Y. Jen, Advanced Energy Materials 3 (2013) 666 – 673.
    [23] R. Thitima, C. Patcharee, S. Takashi, and Y. Susumu, Solid State Electronics 53 (2009) 176 – 180.
    [24] X. Bulliard, S. G. Ihn, S. Yun, Y. Kim, D. Choi, J. Y. Choi, M. Kim, M. Sim, J. H. Park, W. Choi, and K. Cho, Advanced Functional Materials 20 (2010) 4381 – 4387.
    [25] Y. M. Sung, F. C. Hsu, and Y. F. Chen, Solar Energy Materials and Solar Cells 125 (2014) 239 – 247.
    [26] Y. Y. Lin, Y. Y. Lee, L. Chang, J. J. Wu, and C. C. Chen, Applied Physics Letter 94 (2009) 063308-1 – 063308-3.
    [27] C. T. Chen, F.C. Hsu, Y.M. Sung, H. C. Liao, W. C. Yen, W. F. Su and Y. F. Chen, Solar Energy Materials and Solar Cells 95 (2011) 740–744.
    [28] J. Y. Chen, F.C. Hsu, Y.M. Sung, and Y. F. Chen, Journal of Materials Chemistry 22 (2012) 15726–15731.
    [29] T. C. Monson, M. T. Lloyd, D. C. Olson, Y. J. Lee, and J. W. P. Hsu, Advanced Materials 20 (2008) 4755 – 4759.
    [30] C. Goh, S. R. Scully, and M. D. McGehee, Journal of Applied Physics 101 (2007) 114503-1 – 114503-12 0.
    [31] J. Yu, T. L. Shen, W. H. Weng, Y. C. Huang, C. I. Huang, W. F. Su, S. P. Rwei, K. C. Ho, and L. Wang, Advanced Energy Materials 2 (2012) 245 – 252.
    [32] J.Y. Chen, F.C. Hsu, Y.M. Sung, and Y. F. Chen, Journal of Materials Chemistry 22 (2012) 15726–15731.

    Ch2
    [1]http://en.wikipedia.org/wiki/Air_mass_(solar_energy)
    [2]http://www.szsolar.org/dictionary.php
    [3]http://www.twentezon.nl/kennis-platform/technische-aspecten-uitgelicht/prestaties-bij-weinig-zonlicht-cis/
    [4]http://en.wikipedia.org/wiki/Photovoltaic_effect
    [5]Myung-Su Kim,The University of Michigan, 2009
    [6]http://pveducation.org/
    [7]G. Juska, K. Arlauskas, and M. Vili¯unas, Applied Physics Letters, 2005, 86, 112104
    [9]http://www.abo.fi/student/en/Content/Document/document/10920
    [10]JOHN E. MAHAN, THOMAS W.E KSTEDT,, ROBERT I. FRANK, MEMBER, IEEAEN,D ROY KAPI,OW, 1979, 26, 733-739
    [11]Arie Zaban, Miri Greenshtein, and Juan Bisquert, ChemPhysChem, 2003, 4, 859-864
    [12]G. Schlichthˆrl, S. Y. Huang, J. Sprague, A. J. Frank, J. Phys. Chem. B 1997, 101, 8141.
    [13] A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, K. G. U. Wijayantha, J. Phys. Chem. B 2000, 104, 949.
    [14]http://chemistry.umeche.maine.edu/CHY252/HOMO-LUMO.html
    [15]https://www.youtube.com/watch?v=tTebc4hq2sQ
    [16]Yongbo Yuan, Timothy J. Reece, Pankaj Sharma, Shashi Poddar, Stephen Ducharme, Alexei Gruverman, Yang Yang, Jinsong Huang, Nature Materials, 2011, 10, 296–302
    [17]P.Peumans, A.Yakimov, and S.R.Forrest: Small molecular weight organic thin-filmphotodetectors and solar cells. J.Appl.Phys.2003, 93,3693
    [18]L.A.A.Pettersson, L.S.Roman, and O.Inganas: Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J.Appl.Phys.1999, 86,487
    [19]C.W.Tang: Two-layer organic photovoltaic cell. Appl. Phys.Lett.1986, 48,183

    Ch3
    [1]G.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, and E. Lifshin, New York and London. 1981.
    [2]Jason B. Baxter, Eray S. Aydil , Journal of Crystal Growth. 2005, 274, 407–411
    [3]http://en.wikipedia.org/wiki/Langmuir%E2%80%93Blodgett_film

    Ch4
    [1] T. C. Monson, M. T. Lloyd, D. C. Olson, Y. J. Lee, and J. W. P. Hsu, Advanced Materials, 2008, 20,4755 – 4759.
    [2] C. Goh, S. R. Scully, and M. D. McGehee, Journal of Applied Physics.2007, 101, 114503-1 – 114503-12.
    [3] J.Y. Chen, F.C. Hsu, Y.M. Sung, and Y. F. Chen, Journal of Materials Chemistry.2012, 22, 15726–15731.
    [4] D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, and D. S. Ginley,Thin Solid Films.2006, 496, 26–29.
    [5] Y. M. Sung, F. C. Hsu, D. Y. Wang, I. S. Wang, C. C. Chen, H. C. Liao, W. F. Su, and Y. F. Chen,Journal of Materials Chemistry.2011, 21, 17462–17467.
    [6] C. J. Barbec, N. S. Sariciftci, and J. C. Hummelen, Advanced Functional Materials.2001, 11, 15–26.
    [7] V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, Physical Review Letter.2004, 93, 216601-1− 216601-4.
    [8] V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, and P. W. M. Blom, Advanced Functional Materials.2006, 16, 699−708.
    [9] L. Lu, Z. Luo, T. Xu, and L. Yu, Nano Letters.2013, 13, 59 – 64.
    [10] J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, ACS Nano.2011, 5, 959−967.
    [11] J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, K. Cho, Organic Electronics.2009, 10, 416 – 420.
    [12] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tiemey, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. C. Bradley, and J. R. Durrent, Journal of American Chemical Society.2008, 130, 3030 – 3042.
    [13] A. Zaban, M. Greenshtein, and J. Bisquert, Chemical Physics and Chemistry.2003, 4, 859 – 8654.
    [14] G. Garcia-Belmonte, P. P. Boix, J. Bisquert, M. Sessolo, and H. J. Bolink, Solar Energy Materials and Solar Cells.2010, 94, 366–375.
    [15] T. Z. Oo, N. Mathews, G. C. Xing, B. Wu, B. G. Xing, L. H. Wong, T. C. Sum, S. G. Mhaisalkar, Journal of Physical Chemistry C.2012, 116, 6453−6458.
    [16] M. Heo, H. Cho, J. W. Jung, J. R. Jeong, S. Park, J. Y. Kim, Advanced Materials.2011, 23, 5689−5693.

    QR CODE