簡易檢索 / 詳目顯示

研究生: 許庭悅
Hsu, Ting-Yueh
論文名稱: 探討不同程度沉浸感虛擬實境教材對國小學生虛擬實境感知與科學學習之影響
Investigating The Impact of Virtual Reality Materials with Different Levels of Immersion on Elementary School Students' Virtual Reality Perceptions and Science Learning
指導教授: 李文瑜
Lee, Wen-Yu
口試委員: 王嘉瑜
Wang, Chia-Yu
梁至中
Liang, Jyh-Chong
李文瑜
Lee, Wen-Yu
口試日期: 2023/07/21
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 103
中文關鍵詞: 虛擬實境沉浸感臨場感學習投入認知疲勞
英文關鍵詞: Virtual Reality, Immersion, Presence, Learning Engagement, Cognitive Fatigue
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301641
論文種類: 學術論文
相關次數: 點閱:259下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討兩種不同程度沉浸感虛擬實境 (VR) 教材對國小高年級學生虛擬實境感知與自然科學學習之影響,其中高沉浸感組別(Immersive VR,沉浸式 VR,簡稱 IVR)使用 VR 頭戴式顯示器,而低沉浸感組別(Desktop VR,桌面 VR,簡稱 DVR)則使用桌面電腦,兩個組別學習相同的知識內容。本研究關注學生在學習過程中相關的感知與認知因素,除探討學生的學習成效,也透過 VR 可用性瞭解學生對技術的接受程度,同時量測學生在虛擬世界中感知的「身臨其境」程度,更探討學生在學習活動中的投入與參與,以及學生學習時的認知疲勞。本研究亦進一步探究分別是哪些變項可以預測學生的學習投入。本研究為準實驗設計,將 92 名國小六年級生分為 IVR組別(45 人)與 DVR(47 人)組別,分別學習約 30 分鐘的 VR 教材,後以量化方式收集學習者之學習成效、VR 可用性、臨場感、學習投入和認知疲勞等數據進行分析,採用之統計方式為獨立樣本 t 檢定與多元線性迴歸分析。
    研究結果發現,IVR 組別在臨場感之一般題項與空間臨場感子構面上有顯著較高的感受,然兩組別於其他變項上並無顯著差異。針對學習投入的預測可以發現,IVR 組別的空間臨場感與感知易用性可正向預測行為投入;臨場感之一般題項可正向預測情緒投入,而認知疲勞則可負向預測情緒投入;臨場感之一般題項與感知有用性可正向預測認知投入。DVR 組別的空間臨場感與感知易用性可正向預測行為投入;臨場感之一般題項與感知易用性可正向預測情緒投入;空間臨場感與感知易用性則可正向預測認知投入。本研究透過探討學生在 IVR 與 DVR 兩種類型 VR 教材中學習之成效與差異,對教材設計與教育研究提供些許建議。

    This study aims to explore the impact of virtual reality with two different levels of immersion on senior elementary school students' virtual reality (VR) perceptions and science learning. The highly immersive group (IVR) used VR head-mounted displays, while the less immersive group (DVR) used desktops, with both groups learning the same knowledge content. This research focuses on the perceptual and cognitive factors related to students' learning process, not only investigating their learning performance, but also understanding students' acceptance of technology through VR usability, measuring the degree of “being there” students perceive in the virtual world, and exploring students' engagement and participation in learning activities, as well as cognitive fatigue during learning. The study further investigates which variables can predict students' learning engagement. This quasi-experimental design study divided 92 sixth-grade elementary school students into the IVR group (45 students) and the DVR group (47 students) , each learning VR materials for about 30 minutes, then collected data such as learning performance, VR usability, sense of presence, learning engagement, and cognitive fatigue in a quantitative manner for analysis. The statistical methods used were independent sample t test and multiple regression analysis.
    The results indicated that the IVR group had significantly higher perceptions of general presence item and spatial presence in the sub-dimensions. However, there were no significant differences between the two groups in terms of other variables. Regarding the prediction of learning engagement, the study revealed that spatial presence and perceived ease of use in the IVR group could positively predict behavioral engagement; general presence item could positively predict emotional engagement, while cognitive fatigue could negatively predict emotional engagement; general presence item and perceived usefulness could positively predict cognitive engagement. In the DVR group, spatial presence and perceived ease of use could positively predict behavioral engagement; general presence item and perceived ease of use could positively predict emotional engagement; spatial presence and perceived ease of use could positively predict cognitive engagement. This study offers some suggestions for instructional design and educational research by exploring the effectiveness and differences in students' learning in two types of VR materials, IVR and DVR.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 4 第三節 名詞釋義 5 第四節 研究範圍與限制 7 第二章 文獻探討 8 第一節 虛擬實境 8 第二節 臨場感 15 第三節 學習投入 22 第四節 認知疲勞 26 第五節 VR 可用性 31 第三章 研究方法 36 第一節 研究對象 36 第二節 研究設計與流程 37 第三節 VR 教材《虛擬世界遊山玩水—自然界中水的面面觀》 41 第四節 研究工具 47 第五節 資料處理與分析 51 第四章 研究結果 53 第一節 不同組別學生在各變項的差異情形 53 第二節 學習投入的預測 58 第五章 結論與建議 70 第一節 結論與討論 70 第二節 建議 78 參考文獻 82 附錄 100

    吳明隆(2007)。SPSS 操作與應用:變異數分析實務。五南。
    李文瑜(2022)。虛擬實境環境下學生的知識好奇心、科學學習投入以及系統思考之研究(III)(NSTC 108-2628-H-003-007-MY4)。國家科學及技術委員會。
    邱皓政(2019)。量化研究與統計分析: SPSS 與 R 資料分析範例解析。五南圖書出版股份有限公司。
    洪于涵、李文瑜(2021年3月25日)。探討虛擬實境學習環境下國小高年級生之VR可用性、學習情意面向以及科學學習成效之相關。第十六屆台灣數位學習發展研討會,宜蘭縣,臺灣。
    洪新原、梁定澎、張嘉銘(2005)。科技接受模式之彙總研究。資訊管理學報,12(4),211-234。
    洪榮昭、孔令文、戴建耘、劉銘恩(2022)。在 COVID-19 疫情下自我導向學習策略和態度對於線上學習認知疲乏,全神貫注與感知學習效果之相關性研究-以大學生為例。當代教育研究季刊,30(1),119-147。
    孫頌賢(2014)。家庭分化與家庭暴力經驗對愛情依戀的預測。教育心理學報,45(3),349-366。
    徐瑛黛(2023)。探討自我調節學習策略融入沉浸式虛擬實境對國小五年級學生科學學習之影響〔未出版之博士論文〕。國立彰化師範大學。
    Ackerman, P. L., & Kanfer, R. (2009). Test length and cognitive fatigue: an empirical examination of effects on performance and test-taker reactions. Journal of Experimental Psychology: Applied, 15(2), 163.
    Albus, P., Vogt, A., & Seufert, T. (2021). Signaling in virtual reality influences learning outcome and cognitive load. Computers & Education, 166, 104154.
    Allcoat, D., & von Mühlenen, A. (2018). Learning in virtual reality: Effects on performance, emotion and engagement. Research in Learning Technology, 26.
    Amarin, N. Z., & Ghishan, R. I. (2013). Learning with technology from a constructivist point of view. International Journal of Business, Humanities and Technology, 3(1), 52–57.
    Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe, E., & Camos, V. (2007). Time and cognitive load in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 570-585.
    Benbunan-Fich, R., & Hiltz, S. R. (2003). Mediators of the effectiveness of online courses. IEEE Transactions on Professional communication, 46(4), 298-312.
    Benferdia, Y., Ahmad, M. N., Mustapha, M., Baharin, H., & Bajuri, M. Y. (2018). Critical success factors for virtual reality-based training in ophthalmology domain. J Health Med Inform, 9(10.4172), 2157-7420.
    Bergstrom, I., Azevedo, S., Papiotis, P., Saldanha, N., & Slater, M. (2017). The plausibility of a string quartet performance in virtual reality. IEEE Xplore, 23(4), 1352–1359.
    Biocca, F., & Delaney, B. (1995). Immersive virtual reality technology. Communication in the age of virtual reality, 15(32), 10-5555.
    Birenboim, A., Dijst, M., Ettema, D., de Kruijf, J., de Leeuw, G., & Dogterom, N. (2019). The utilization of immersive virtual environments for the investigation of environmental preferences. Landscape and Urban Planning, 189, 129–138.
    Boksem, M. A., & Tops, M. (2008). Mental fatigue: costs and benefits. Brain research reviews, 59(1), 125-139.
    Borragán, G., Slama, H., Bartolomei, M., & Peigneux, P. (2017). Cognitive fatigue: a time-based resource-sharing account. Cortex, 89, 71-84.
    Bowman, D. A., & McMahan, R. P. (2007). Virtual reality: how much immersion is enough?. Computer, 40(7), 36-43.
    Burbules, N. C. (2006). Rethinking the virtual. The international handbook of virtual learning environments, 37-58.
    Buttussi, F., & Chittaro, L. (2017). Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE transactions on visualization and computer graphics, 24(2), 1063-1076.
    Calvert, J., & Abadia, R. (2020). Impact of immersing university and high school students in educational linear narratives using virtual reality technology. Computers & Education, 159, 104005.
    Castelvecchi, D. (2016). Low-cost headsets boost virtual reality’s lab appeal. Nature, 533, 153.
    Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293–332.
    Chang, C. W., Heo, J., Yeh, S. C., Han, H. Y., & Li, M. (2018). The effects of immersion and interactivity on college students’ acceptance of a novel VR-supported educational technology for mental rotation. IEEE Access, 6, 66590-66599.
    Chang, S. C., Hsu, T. C., Chen, Y. N., & Jong, M. S. Y. (2020). The effects of spherical video-based virtual reality implementation on students’ natural science learning effectiveness. Interactive Learning Environments, 28(7), 915-929.
    Chapman, E. (2003). Assessing Student Engagement Rates (ED482269). ERIC. http://files.eric.ed.gov/fulltext/ED482269.pdf
    Cheang, K. I. (2009). Effect of learner-centered teaching on motivation and learning strategies in a third-year pharmacotherapy course. American Journal of Pharmaceutical Education, 73(3), 42.
    Chen, Y. L., & Hsu, C. C. (2020). Self-regulated mobile game-based English learning in a virtual reality environment. Computers & Education, 154, 103910.
    Chen, Y.-L. (2016). The effects of virtual reality learning environment on student cognitive and linguistic development. The Asia-Pacific Education Researcher, 25(4), 637–646.
    Christodoulou, C. (2005). The assessment and measurement of fatigue. Fatigue as a window to the brain, 19-35.
    Christou, C. (2010). Virtual reality in education. In Affective, interactive and cognitive methods for e-learning design: creating an optimal education experience (pp. 228-243). IGI Global.
    Coates, H. (2006). Student engagement in campus-based and online education: University connections. Routledge.
    Coban, M., Bolat, Y. I., & Goksu, I. (2022). The potential of immersive virtual reality to enhance learning: A meta-analysis. Educational Research Review, 36, 100452.
    Connell, J. P., & Wellborn, J. G. (1991). Competence, autonomy, and relatedness: A motivational analysis of self-system processes.
    Cummings, J. J., & Bailenson, J. N. (2016). How immersive is enough? A meta-analysis of the effect of immersive technology on user presence. Media Psychology, 19(2), 272–309.
    Dalgarno, B., & Lee, M. J. (2010). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41(1), 10–32.
    Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results (Doctoral dissertation, Massachusetts Institute of Technology).
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13, 319–339.
    Davis, F. D. (1993). User acceptance of information technology: System characteristics, user perceptions and behavioral impacts. International Journal of Man–Machine Studies, 38, 475–487.
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35, 982–1003.
    DeLuca, J. (2005). Fatigue, cognition, and mental effort. Fatigue as a window to the brain, 37.
    Di Natale, A. F., Repetto, C., Riva, G., & Villani, D. (2020). Immersive virtual reality in K‐12 and higher education: A 10‐year systematic review of empirical research. British Journal of Educational Technology, 51(6), 2006-2033.
    Dinis, F. M., Guimarães, A. S., Carvalho, B. R., & Martins, J. P. P. (2017, April). Development of virtual reality game-based interfaces for civil engineering education. In 2017 IEEE global engineering education conference (EDUCON) (pp. 1195-1202). IEEE.
    Dubovi, I. (2022). Cognitive and emotional engagement while learning with VR: The perspective of multimodal methodology. Computers & Education, 183, 104495.
    Feng, Y., Duives, D. C., & Hoogendoorn, S. P. (2022). Wayfinding behaviour in a multi-level building: A comparative study of HMD VR and Desktop VR. Advanced Engineering Informatics, 51, 101475.
    Ferrell, J. B., Campbell, J. P., McCarthy, D. R., McKay, K. T., Hensinger, M., Srinivasan, R., ... & Schneebeli, S. T. (2019). Chemical exploration with virtual reality in organic teaching laboratories. Journal of Chemical Education, 96(9), 1961-1966.
    Fisk, J. D., Ritvo, P. G., Ross, L., Haase, D. A., Marrie, T. J., & Schlech, W. F. (1994). Measuring the functional impact of fatigue: initial validation of the fatigue impact scale. Clinical Infectious Diseases, 18(Supplement_1), S79-S83.
    Frederiksen, J. G., Sørensen, S. M., Konge, L., Svendsen, M. B., Nobel-Jørgensen, M., Bjerrum, F., et al. (2020). Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: A randomized trial. Surgical Endoscopy, 34(3), 1244–1252.
    Fredricks, J. A., & McColskey, W. (2012). The measurement of student engagement: A comparative analysis of various methods and student self-report instruments. Handbook of research on student engagement, 763-782.
    Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of educational research, 74(1), 59-109.
    Freina, L., & Ott, M. (2015). A literature review on immersive virtual reality in education. The International Scientific Conference ELearning and Software for Education, 133–141.
    Fussell, S. G., & Truong, D. (2022). Using virtual reality for dynamic learning: an extended technology acceptance model. Virtual Reality, 26(1), 249-267.
    Geng, J., Chai, C. S., Jong, M. S. Y., & Luk, E. T. H. (2021). Understanding the pedagogical potential of Interactive Spherical Video-based Virtual Reality from the teachers’ perspective through the ACE framework. Interactive Learning Environments, 29(4), 618-633.
    Gergelyfi, M., Jacob, B., Olivier, E., & Zénon, A. (2015). Dissociation between mental fatigue and motivational state during prolonged mental activity. Frontiers in behavioral neuroscience, 9, 176.
    Gong, M., Xu, Y., & Yu, Y. (2004). An enhanced technology acceptance model for web-based learning. Journal of Information Systems Education, 15(4), 365-374.
    Grassini, S., & Laumann, K. (2020). Questionnaire Measures and Physiological Correlates of Presence: A Systematic Review. Frontiers in Psychology, 11, 349.
    Greene, B. A. (2015). Measuring cognitive engagement with self-report scales: Reflections from over 20 years of research. Educational Psychologist, 50(1), 14-30.
    Guan, J. Q., Wang, L. H., Chen, Q., Jin, K., & Hwang, G. J. (2021). Effects of a virtual reality-based pottery making approach on junior high school students’ creativity and learning engagement. Interactive Learning Environments, 1-17.
    Gutierrez, F., Pierce, J., Vergara, V., Coulter, R., Saland, L., Caudell, T., Goldsmith, T. E., & Alverson, D. (2007). The effect of degree of immersion upon learning performance in virtual reality simulations for medical education. Medicine Meets Virtual Reality, 15, 155–160.
    Hamilton, D., McKechnie, J., Edgerton, E., & Wilson, C. (2021). Immersive virtual reality as a pedagogical tool in education: A systemic literature review of quantitative leaning outcomes and experimental design. Journal of Computers in Education, 8(1), 1–32.
    Hee, O. C. (2014). Validity and Reliability of the Customer-Oriented Behaviour Scale in the Health Tourism Hospitals in Malaysia. International Journal of Caring Sciences, 7(3), 771-775.
    Henson, K. T. (2003). Foundations for learner-centered education: A knowledge base. Education, 124(1), 5–16.
    Holtzer, R., Shuman, M., Mahoney, J. R., Lipton, R., & Verghese, J. (2010). Cognitive fatigue defined in the context of attention networks. Aging, Neuropsychology, and Cognition, 18(1), 108-128.
    Hong, J. C., Liu, X., Cao, W., Tai, K. H., & Zhao, L. (2022). Effects of self-efficacy and online learning mind states on learning ineffectiveness during the COVID-19 lockdown. Educational Technology & Society, 25(1), 142-154.
    Huang, H. L., Hwang, G. J., & Chang, C. Y. (2020). Learning to be a writer: A spherical video‐based virtual reality approach to supporting descriptive article writing in high school Chinese courses. British Journal of Educational Technology, 51(4), 1386-1405.
    Huang, W., Roscoe, R. D., Craig, S. D., & Johnson-Glenberg, M. C. (2022). Extending the cognitive-affective theory of learning with media in virtual reality learning: A structural equation modeling approach. Journal of Educational Computing Research, 60(4), 807-842.
    Huang, W., Roscoe, R. D., Johnson‐Glenberg, M. C., & Craig, S. D. (2021). Motivation, engagement, and performance across multiple virtual reality sessions and levels of immersion. Journal of Computer Assisted Learning, 37(3), 745-758.
    Hwang, M. Y., Hong, J. C., Ye, J. H., Wu, Y. F., Tai, K. H., & Kiu, M. C. (2019). Practicing abductive reasoning: The correlations between cognitive factors and learning effects. Computers & Education, 138, 33-45.
    Jang, S., Vitale, J. M., Jyung, R. W., & Black, J. B. (2017). Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment. Computers & Education, 106, 150–165.
    Jensen, L. X., & Konradsen, F. (2018). A review of the use of virtual reality headmounted displays in education and training. Education and Information Technologies, 23(4), 1515–1529.
    Johnson-Glenberg, M. C. (2018). Immersive VR and education: Embodied design principles that include gesture and hand controls. Frontiers in Robotics and AI, 5, 81.
    Johnson‐Glenberg, M. C., Bartolomea, H., & Kalina, E. (2021). Platform is not destiny: Embodied learning effects comparing 2D desktop to 3D virtual reality STEM experiences. Journal of Computer Assisted Learning, 37(5), 1263-1284.
    Ke, F., Xie, K., & Xie, Y. (2016). Game‐based learning engagement: A theory‐and data‐driven exploration. British Journal of Educational Technology, 47(6), 1183-1201.
    Keiler, L. S. (2018). Teachers’ roles and identities in student-centered classrooms. International journal of STEM education, 5, 1-20.
    Kim, J., & Song, Y. S. (1997). Instructional Design Guidelines for Virtual Reality in Classroom Applications.
    King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & management, 43(6), 740-755.
    Kinzie, M. B., Sullivan, H. J., & Berdel, R. L. (1988). Learner control and achievement in science computer-assisted instruction. Journal of Educational Psychology, 80(3), 299–303.
    Kozhevnikov, M., Gurlitt, J., & Kozhevnikov, M. (2013). Learning relative motion concepts in immersive and non-immersive virtual environments. Journal of Science Education and Technology, 22, 952–962.
    Krupp, L. B., LaRocca, N. G., Muir-Nash, J., & Steinberg, A. D. (1989). The fatigue severity scale: application to patients with multiple sclerosis and systemic lupus erythematosus. Archives of neurology, 46(10), 1121-1123.
    Lai, T. L., Lin, Y. S., Chou, C. Y., & Yueh, H. P. (2022). Evaluation of an Inquiry-Based Virtual Lab for Junior High School Science Classes. Journal of Educational Computing Research, 59(8), 1579-1600.
    Lau, K., & Lee, P. (2015). The use of virtual reality for creating unusual environmental stimulation to motivate students to explore creative ideas. Interactive Learning Environments, 23(1), 3–18.
    Lavie, N. (2006). The role of perceptual load in visual awareness. Brain Research, 1080(1), 91-100.
    Lee, E. A. L., Wong, K. W., & Fung, C. C. (2010). How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Computers & Education, 55(4), 1424–1442.
    Lee, S. W. Y., Hsu, Y. T., & Cheng, K. H. (2022). Do curious students learn more science in an immersive virtual reality environment? Exploring the impact of advance organizers and epistemic curiosity. Computers & Education, 182, 104456.
    Lee, S. W. Y., Shih, M., Liang, J. C., & Tseng, Y. C. (2021). Investigating learners' engagement and science learning outcomes in different designs of participatory simulated games. British Journal of Educational Technology, 52(3), 1197-1214.
    Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Computers & Education, 95, 174-187.
    Liu, D., Dede, C., Huang, R., & Richards, J. (2017). Virtual, augmented, and mixed realities in education. Singapore: Springer.
    Liu, R., Wang, L., Lei, J., Wang, Q., & Ren, Y. (2020). Effects of an immersive virtual reality‐based classroom on students’ learning performance in science lessons. British Journal of Educational Technology, 51(6), 2034-2049.
    Makransky, G., & Lilleholt, L. (2018). A structural equation modeling investigation of the emotional value of immersive virtual reality in education. Educational Technology Research & Development, 66(5), 1141–1164.
    Makransky, G., & Petersen, G. B. (2021). The cognitive affective model of immersive learning (CAMIL): A theoretical research-based model of learning in immersive virtual reality. Educational Psychology Review, 33(3), 937-958.
    Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225-236.
    Mallam, S. C., & Nazir, S. (2021). Effectiveness of VR head mounted displays in professional training: A systematic review. Technology, Knowledge and Learning, 26(4), 999-1041.
    Marcora, S., Staiano, W., & Manning, V. (2009). Mental fatigue impairs physical performance in humans. Journal of Applied Physiology, 106(3), 857-864.
    Mayer, R. E. (2020). Multimedia learning (3rd ed). Cambridge University Press.
    Mazuryk, T., & Gervautz, M. (1996). History, applications, technology and future. Virtual Reality, 72.
    Mikropoulos, T. A., & Natsis, A. (2011). Educational virtual environments: A ten-year review of empirical research (1999-2009). Computers & Education, 56(3), 769-780.
    Molina-Carmona, R., Pertegal-Felices, M. L., Jimeno-Morenilla, A., & Mora-Mora, H. (2018). Virtual reality learning activities for multimedia students to enhance spatial ability. Sustainability, 10(4), 1074.
    Moreno, R., & Mayer, R. E. (2002). Learning science in virtual reality multimedia environments: Role of methods and media. Journal of Educational Psychology, 94(3), 598–610.
    Moro, C., Štromberga, Z., Raikos, A., & Stirling, A. (2017). The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anatomical Sciences Education, 10, 549–559.
    Muhanna, M. A. (2015). Virtual reality and the CAVE: Taxonomy, interaction challenges and research directions. Journal of King Saud University-Computer and Information Sciences, 27(3), 344-361.
    Nachlieli, T., & Tabach, M. (2019). Ritual-enabling opportunities-to-learn in mathematics classrooms. Educational Studies in Mathematics, 101(2), 253-271.
    Olmos-Raya, E., Ferreira-Cavalcanti, J., Contero, M., Castellanos, M. C., Giglioli, I. A. C., & Alcañiz, M. (2018). Mobile virtual reality as an educational platform: A pilot study on the impact of immersion and positive emotion induction in the learning process. Eurasia Journal of Mathematics, Science and Technology Education, 14, 2045–2057.
    Pantelidis, V. S. (2010). Reasons to use virtual reality in education and training courses and a model to determine when to use virtual reality. Themes in science and technology education, 2(1-2), 59-70.
    Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students' behavioral intention to use e-learning. Journal of Educational Technology & Society, 12(3), 150-162.
    Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. Journal of Educational Psychology, 110(6), 785-797.
    Parong, J., & Mayer, R. E. (2021). Learning about history in immersive virtual reality: does immersion facilitate learning?. Educational Technology Research and Development, 69(3), 1433-1451.
    Partanen, L. (2020). How student-centred teaching in quantum chemistry affects students’ experiences of learning and motivation—a self-determination theory perspective. Chemistry Education Research and Practice, 21(1), 79-94.
    Paul, K. (2022, September). CAVE (Cave Automatic Virtual Environment). WhatIs .com. https://www.techtarget.com/whatis/definition/CAVE-Cave-Automatic-Virtual-Environment
    Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778.
    Richards, D., & Taylor, M. (2015). A Comparison of learning gains when using a 2D simulation tool versus a 3D virtual world: An experiment to find the right representation involving the Marginal Value Theorem. Computers & Education, 86, 157-171.
    Riva, G., Davide, F., & IJsselsteijn, W. A. (2003). Measuring presence: Subjective, behavioral and physiological methods. Being there: Concepts, effects and measurement of user presence in synthetic environments, 5, 110-118.
    Rogers, S. (2019). Virtual reality: The learning aid of the 21st century. Secondary Virtual reality: The learning aid of the 21st century.
    Ryan, A. M., & Patrick, H. (2001). The classroom social environment and changes in adolescents’ motivation and engagement during middle school. American educational research journal, 38(2), 437-460.
    Salzman, M. C., Dede, C., Loftin, R. B., & Chen, J. (1999). A model for understanding how virtual reality aids complex conceptual learning. Presence: Teleoperators and Virtual Environments, 8(3), 293–316.
    Sanchez-Vives, M.V. & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6, 332-339.
    Santos, B. S., Dias, P., Pimentel, A., Baggerman, J. W., Ferreira, C., Silva, S., & Madeira, J. (2009). Head-mounted display versus desktop for 3D navigation in virtual reality: A user study. Multimedia Tools and Applications, 41(1), 161–181.
    Schubert, T., Friedmann, F., & Regenbrecht, H. (2001). The Experience of Presence: Factor Analytic Insights. Presence: Teleoperators and Virtual Environments, 10(3), 266–281.
    Schuemie, M. J., Van Der Straaten, P., Krijin, M., & Van Der Mast, C. A. P. G. (2001). Research on presence in virtual reality: a survey. Cyberpsychology & Behavior, 4(2), 183–210.
    Schwid, S. R., Tyler, C. M., Scheid, E. A., Weinstein, A., Goodman, A. D., & McDermott, M. P. (2003). Cognitive fatigue during a test requiring sustained attention: a pilot study. Multiple Sclerosis Journal, 9(5), 503-508.
    Schwind, V., Knierim, P., Haas, N., & Henze, N. (2019). Using Presence Questionnaires in Virtual Reality. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1-12.
    Sherman, W. R., & Craig, A. B. (2018). Understanding virtual reality: Interface, application, and design. Morgan Kaufmann.
    Skarbez, R., Brooks, Jr., F. P., & Whitton, M. C. (2018). A Survey of Presence and Related Concepts. ACM Computing Surveys, 50(6), 1-39.
    Slater, M. (1999). Measuring Presence: A Response to the Witmer and Singer Presence Questionnaire. Presence: Teleoperators and Virtual Environments, 8(5), 560-565.
    Slater, M. (2003). A note on presence terminology. Presence connect, 3(3), 1-5.
    Slater, M. (2018). Immersion and the illusion of presence in virtual reality. British Journal of Psychology, 109(3), 431-433.
    Slater, M., & Sanchez-Vives, M. V. (2016). Enhancing our lives with immersive virtual reality. Frontiers in Robotics and AI, 3, 74.
    Slater, M., & Wilbur, S. (1997). A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators & Virtual Environments, 6(6), 603-616.
    Smets, E. M. A., Garssen, B., Bonke, B. D., & De Haes, J. C. J. M. (1995). The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. Journal of psychosomatic research, 39(3), 315-325.
    Smith, J. W., & Salmon, J. L. (2017, November). Development and analysis of virtual reality technician-training platform and methods. In Proceedings of the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) (Vol. 6, pp. 1-12).
    Smith, S. J., Farra, S. L., Ulrich, D. L., Hodgson, E., Nicely, S., & Mickle, A. (2018). Effectiveness of two varying levels of virtual reality simulation. Nursing Education Perspectives, 39, 10-15.
    Stewart, C. C., Wright, R. A., Azor Hui, S. K., & Simmons, A. (2009). Outcome expectancy as a moderator of mental fatigue influence on cardiovascular response. Psychophysiology, 46(6), 1141-1149.
    Sutherland, I. E. (1965, May). The ultimate display. In Proceedings of the IFIP Congress.
    Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257-285
    Sweller, J., Ayres, P., Kalyuga, S., Sweller, J., Ayres, P., & Kalyuga, S. (2011). Measuring cognitive load. Cognitive load theory, 71-85.
    Tanaka, M., Ishii, A., & Watanabe, Y. (2014). Neural effects of mental fatigue caused by continuous attention load: a magnetoencephalography study. Brain research, 1561, 60-66.
    Topu, F. B., & Goktas, Y. (2019). The effects of guided-unguided learning in 3d virtual environment on students' engagement and achievement. Computers in Human Behavior, 92, 1-10.
    Towell, J., & Towell, E. (1997). Presence in text-based networked virtual environments or “MUDS”. Presence: Teleoperators and Virtual Environments, 6(5), 590-595.
    Trejo, L. J., Kochavi, R., Kubitz, K., Montgomery, L. D., Rosipal, R., & Matthews, B. (2005, May). Measures and models for predicting cognitive fatigue. In Biomonitoring for Physiological and Cognitive Performance during Military Operations (Vol. 5797, pp. 105-115). SPIE.
    Usoh, M., Alberto, C., & Slater, M. (1996). Presence: experiments in the psychology of virtual environments. Department of Computer Science, University College London, UK.
    Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204.
    Vesga, J. B., Xu, X., & He, H. (2021, March). The effects of cognitive load on engagement in a virtual reality learning environment. In 2021 IEEE Virtual Reality and 3D User Interfaces (VR) (pp. 645-652). IEEE.
    Wang, M.-T., Fredricks, J. A., Ye, F., Hofkens, T. L., & Linn, J. S. (2016). The math and science engagement scales: Scale development, validation, and psychometric properties. Learning and Instruction, 43, 16-26.
    Wang, S., & Zhang, D. (2019). Student-centered teaching, deep learning, and self-reported ability improvement in higher education: Evidence from Mainland China. Innovations in Education & Teaching International, 56(5), 581-593.
    Welch, R. B., Blackmon, T. T., Liu, A., Mellers, B. A., & Stark, L. W. (1996). The effects of pictorial realism, delay of visual feedback, and observer interactivity on the subjective sense of presence. Presence: Teleoperators & Virtual Environments, 5(3), 263-273.
    Witmer, B. G., & Singer, M. J. (1994). Measuring immersion in virtual environments. ARI Technical Report 1014). Alexandria, VA: US Army Research Institute for the Behavioral and Social Sciences.
    Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence, 7(3), 225-240.
    Witmer, B. G., Jerome, C. J., & Singer, M. J. (2005). The Factor Structure of the Presence Questionnaire. Presence: Teleoperators and Virtual Environments, 14(3), 298-312.
    Wu, B., Yu, X., & Gu, X. (2020). Effectiveness of immersive virtual reality using head‐mounted displays on learning performance: A meta‐analysis. British Journal of Educational Technology, 51(6), 1991-2005.
    Zawacki-Richter, O., & Latchem, C. (2018). Exploring four decades of research in computers & education. Computers & Education, 122, 136-152.

    無法下載圖示 電子全文延後公開
    2026/12/30
    QR CODE