簡易檢索 / 詳目顯示

研究生: 徐邦琪
Pang-chi Hsu
論文名稱: 聖嬰與沿熱帶風暴路徑之擾動能量診斷
ENSO and Eddy Energetics along the Tropical Storm Track
指導教授: 鄒治華
Tsou, Chih-Hua
學位類別: 博士
Doctor
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 80
中文關鍵詞: 聖嬰擾動能量診斷熱帶風暴高解析度大氣環流模式
英文關鍵詞: ENSO, Eddy energetics, Tropical storm, High-resolution AGCM
論文種類: 學術論文
相關次數: 點閱:262下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究利用三維擾動能量診斷及高解析度ECHAM4.6 T106數值模式研究聖嬰、西北太平洋大尺度環流場和熱帶風暴間的交互作用。研究結果發現,當七至九月Niño3.4區域的海溫增暖時(暖聖嬰年),伴隨季風槽與低層西風之增強和向東南延伸,西北太平洋熱帶風暴之生成區域亦向東南發展。低層之擾動正壓能量轉換和高層之擾動斜壓能量轉換均增強,此兩能量轉換之正距平自130°-150°E菲律賓海向換日線延伸。而西北太平洋地區正壓和斜壓能量轉換的增強,主要與熱帶中東太平洋海溫正距平引發之氣旋式距平、向東延伸的西風噴流和上升運動有關。大尺度環流場的變異、擾動正壓和斜壓能量轉換的增強共同有利於熱帶風暴生成區向東南的發展。
    暖年時,西北太平洋之副熱帶和中緯度地區為反氣旋式距平及下沈運動盤據,此大尺度環流之配置並不利於擾動正壓能量轉換。當西北太平洋地區之熱帶風暴移行至20°N以北時,支持熱帶風暴持續發展和增強之能量來源為較強的擾動斜壓能量轉換。而斜壓能量轉換將擾動可用位能轉至擾動動能後,損失的擾動可用位能可經由擾動本身之非絕熱加熱效應產生,或經由擾動熱能垂直傳輸,將平均可用位能轉換至擾動可用位能。而後者之能量轉換機制在二維之擾動可用位能診斷中無法顯現。綜合擾動能量診斷之結果可知,暖年時,大尺度環流場及對應之擾動正壓能量轉換有利於熱帶風暴生成區向東南發展,而熱帶瞬變擾動(包含熱帶風暴)可經由擾動本身非絕熱加熱及斜壓過程,得以自我發展並增強。
    為進一步釐清與聖嬰有關的海溫變異、大尺度環流場和擾動能量過程三者間之主動和被動關係,本研究採用高解析度ECHAM4.6 T106進行三組數值實驗。控制實驗以全球觀測海溫驅動ECHAM4,此模式成功模擬140°E 以東之大尺度環流場以及熱帶風暴生成、頻率的年際變化。數值實驗的結果顯示,赤道中東太平洋海溫的增暖於大尺度環流場及熱帶風暴年際變化上扮演一主動角色,其於西北太平洋上產生氣旋式環流和強西風距平,有利擾動正壓及斜壓能量轉換增強,支持瞬變擾動(包含熱帶風暴)生成及發展。 然而,赤道西太平洋之冷卻效應則會使得由中東太平洋暖海溫引發之低層氣旋式環流和西風噴流之強度減弱。
    ECHAM4 T106對熱帶風暴強度的模擬明顯低估,此誤差可能來自其解析度的不足,而限制了模式中瞬變擾動(包含熱帶風暴)的自我成長過程,並進而降低模式裡瞬變擾動與大尺度環流場之間的交互作用。提高模式的解析度和/或採用海氣耦合模式可能有助改進模式內擾動場之非絕熱釋放過程,以及擾動非絕熱加熱對熱帶風暴強度、路徑和大尺度環流場影響之模擬。

    Abstract
    The interaction among ENSO, large-scale circulation and tropical storm (TS) activity over the western North Pacific is investigated through three-dimensional eddy energetics and ECHAM4.6 T106 high resolution numerical experiments. The results show that the TS formation regions shift southeastward associated with the southeastward extension and intensification of monsoon trough and low-level westerly when the July to September Niño3.4 SST is increased (warm ENSO years). Both the eddy barotropic energy conversion at low-levels and eddy baroclinic energy conversion at high-levels enhance and extend eastward from the Philippine Sea (130°-150°E) to the date line. The enhanced barotropic and baroclinic energy conversion is mainly related to the cyclonic anomaly, eastward extension of westerly jet and anomalous ascending motion associated with warm SST anomaly over the tropical central-eastern Pacific. These anomalous large-scale environments and the barotropic energy conversion as well as the baroclinic energy conversion are favorable for the southward extension of TS formation region.
    The anomalous cold SST, anticyclonic anomaly and anomalous descending motion appear over the subtropical and mid-latitude western North Pacific during warm years. These large-scale circulations are not beneficial for the barotropic energy conversion in this region. The enhanced baroclinic energy conversion plays an important role in maintaining and strengthening the subsequent development of tropical storms as they propagate into north of 20°N over the western North Pacific. The loss of EAPE to EKE due to the baroclinic energy conversion is supplemented by both the EAPE generation through eddy diabatic heating and MAPE to EAPE conversion associated with the vertical heat transport of eddies, which is excluded in two-dimensional EAPE budget equation. These eddy energetic results suggested that the large-scale circulations and corresponding eddy barotropic energy conversion mainly contribute to the southeastward shift of TS genesis region. The tropical transient eddies including tropical storms may be self-development and intensify through their diabatic heating and baroclinic processes.
    To clarify the active and passive roles between ENSO-related SST, large-scale circulation and eddy energy process, three numerical experiments using the ECHAM4.6 T106 high resolution model are performed. The ECHAM4 control experiment, force by observed SST globally, reproduces the interannual variations of large-scale circulation, TS formation and TS frequency east of 140°E as in observation. The results of numerical experiments support that warm SST forcing over the equatorial central-eastern Pacific plays an active role in setting the favorable large-scale environments for the formation and early-development of transient eddy including TS over the western North Pacific. The equatorial central-eastern Pacific heating generates significant cyclonic anomaly and strong westerly that enhanced the eddy barotropic and baroclinic energy conversion for the growth of transient eddies including TSs. However, the cooling effect over the equatorial western Pacific would weaken the amplitudes of low-level cyclonic anomaly and westerly jet induced by warm SST anomaly over the equatorial central-eastern Pacific.
    The ECHAM4 T106 significantly underestimates the intensity of TS which might be resulted from the insufficient resolution. This discrepancy would restrain the strengthening of transient eddy including TS through self development process and in turn reduce the interaction between transient eddies and large-scale circulation in model. A sufficient high resolution and/or an air-sea coupled model might improve the simulations of eddy diabatic heating and its impact on the TS intensity, track and large-scale environments.

    Contents Acknowledgement........................................ I Abstract in Chinese....................................II Abstract in English....................................IV Contents...............................................VI List of Tables.......................................VIII List of Figures........................................IX Part I: Eddy Energetics 1. Introduction for Part I.............................. 1 2. Data and analysis methods.............................4 2.1 Data..................................................4 2.2 Classification of warm and cold ENSO years............4 3. Diagnostic energetic equations.........................6 3.1 Eddy kinetic and available potential energy equations..6 3.2 Diabatic heating calculation..........................8 4. ENSO, large-scale circulation and TS activity in the WNP......................................................10 5. Eddy energetic analysis along the tropical storm track....................................................13 5.1 Diagnosis of eddy kinetic energy.....................13 5.2 Diagnosis of eddy available potential energy.........16 6. Summary for Part I....................................19 Part II: Numerical Experiments 7. Introduction for Part II..............................24 8. Model description, experiments and TS identification..27 8.1 ECHAM4 T106 AGCM.....................................27 8.2 Experimental design..................................27 8.3 TS identification and tracking methodology...........29 9. Simulation results....................................31 9.1 Simulation results of ENSO, large-scale circulation and TS activity..............................................31 9.2 Impacts of tropical Pacific SST anomalies............33 9.2.1 Interannual variations of large-scale circulation and TS activity..............................................33 9.2.2 Eddy energetics along TS track.....................36 10. Summary for Part II..................................43 Reference............................................... 47

    Reference
    Annamalai, H., K. Hamilton, and K.R. Sperber, 2007: The South Asian Summer Monsoon and Its Relationship with ENSO in the IPCC AR4 Simulations. J. Climate, 20, 1071–1092.
    Ashok, K., Z. Guan, N.H. Saji, and T. Yamagata, 2004: Individual and Combined Influences of ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon. J. Climate, 17, 3141–3155.
    Behera, S.K., J.J. Luo, S. Masson, S.A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM Study on the Interaction between IOD and ENSO. J. Climate, 19, 1688–1705.
    Bell G. D., Coauthors, 2000: Climate assessment for 1999. Bull. Am. Meteorol. Soc., 81, S1–S50.
    Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917-946.
    Bengtsson L., H. Böttger, and M. Kanamitsu, 1982: Simulation of hurricane-type vortices in a general circulation model. Tellus, 34, 440-457.
    ------, M. Botzet and M. Esch, 1995: Hurricane-type vortices in a general circulation model. Tellus, 47A, 175-196.
    ------, K. I. Hodges, M. Esch, 2007: Tropical cyclones in a T159 resolution global climate model: comparison with observations and re-analyses. Tellus, 59A, 396-416.
    Camargo S. J, Stephen E. Zebiak, 2002: Improving the detection and tracking of tropical cyclones in atmospheric general circulation models. Wea. Forecasting, 17, 1152-1162.
    ------, and Adam H. Sobel, 2004: Formation of tropical storms in an atmospheric general circulation model. Tellus, 56A, 56-67.
    -----, Anthony G. Barnston, and Stephen E. Zebiak, 2005: A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus, 57A, 589-604.
    ------, and A.H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996–3006.
    Chan, Johnny C. L., and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 4590-4602.
    ------, 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteorol. Atmos. Phys., 89, 143-152.
    Chauvin, F., J.-F. Royer and M. Déque, 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution, Clim. Dynamics, 27, 377–399.
    Chen, T.-C., S.-P. Weng, N. Yamazaki, and S. Kiehne, 1998: Interannual variation in the tropical cyclone formation over the western North Pacific. Mon. Wea. Rev., 126, 1080-1090.
    ------, S.Y. Wang, and M.C. Yen, 2006: Interannual variation of the tropical cyclone activity over the western North Pacific. J. Climate, 19, 5709–5720.
    Chia H. H and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the Northwest Pacific. J. Climate, 15, 2934-2944.
    Chou, C., 2004: Establishment of the low-level wind anomalies over the western North Pacific during ENSO development. J. Climate, 17, 2195-2212.
    Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843-858.
    Fu, X., B. Wang, and T. Li, 2002: Impacts of air–sea coupling on the simulation of mean Asian summer monsoon in the ECHAM4 model. Mon. Wea. Rev., 130, 2889-2904.
    Gao S., J. Wang, and Y. Ding, 1988: The triggering effect of near-equatorial cyclones on El Niño. Adv. Atmos. Sci., 5, 87-95.
    Ge, X., T. Li, Y. Wang, and M.S. Peng, 2008: Tropical Cyclone Energy Dispersion in a Three-Dimensional Primitive Equation Model: Upper-Tropospheric Influence. J. Atmos. Sci., 65, 2272–2289.
    Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.
    Gray W. M., 1979: Hurricanes: Their formation, structure and likely role in the general circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155-218.
    Holland, G. J., 1995: Scale interaction in the western Pacific monsoon. Meteor. Atmos. Phys., 56, 52–79.
    Hoskins, B.J., and D.J. Karoly, 1981: The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing. J. Atmos. Sci., 38, 1179–1196.
    Hsieh J.-H. and K. H. Cook, 2007: A study of the energetics of African easterly waves using a regional climate model. J. Atmos. Sci., 64, 421-440.
    Hsu, H.-H., and X. Liu, 2003: Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall. Geophys. Res. Lett, 30, 2066-2069.
    Hsu, Pang-chi, Tsou, C.-H., W.-S. Kau, H.-H. Hsu, 2005: Interannual variations of the intraseasonal oscillation during typhoon season over western Pacific. Atmosphere Science, 33, 29-48. (in Chinese with an English abstract)
    Hu Q., Y. Tawaye, and S. Feng, 2004: Variations of the northern hemisphere atmospheric energetics: 1948–2000, J. Climate, 17, 1975-1986.
    JTWC, cited 2008: Joint Typhoon Warning Center best track data site. [Available online at https://metocph.nmci.navy.mil/jtwc.php].
    Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M. and Potter, G. L., 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc., 83, 1631-1643.
    Kawamura R., T. Matsuura, and I. Satoshi, 2001b: Interannual atmosphere–ocean variations in the tropical western North Pacific relevant to the Asian summer monsoon–ENSO coupling. J. Meteor. Soc. Japan, 79, 883–898.
    Keen R. A., 1982: The role of cross-equatorial tropical cyclone pairs in the Southern Oscillation. Mon. Wea. Rev., 110, 1405–1416.
    Kindle J. C., and P. A. Phoebus, 1995: The ocean response to operational westerly wind bursts during the 1991-1992 El Niño. J. Geophys. Res., 100, 4893-4920.
    Knutson, T. R., Joseph J. Sirutis, Stephen T. Garner, Isaac M. Held, and Robert E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull. Am. Meteorol. Soc., 88, 1549-1565.
    Kucharski, F., A. Bracco, J.H. Yoo, and F. Molteni, 2007: Low-Frequency Variability of the Indian Monsoon–ENSO Relationship and the Tropical Atlantic: The “Weakening” of the 1980s and 1990s. J. Climate, 20, 4255–4266.
    Kung, E. C., 1966: Kinetic energy generation and dissipation in the large-scale atmospheric circulation. Mon. Wea. Rev., 94, 67-82.
    ------, 1977: Energy sources in middle-latitude synoptic-scale disturbances. J. Atmos. Sci., 34, 1352-1365.
    Kuo, H.C., J.H. Chen, R.T. Williams, and C.P. Chang, 2001: Rossby waves in zonally opposing mean flow: Behavior in Northwest Pacific summer monsoon. J. Atmos. Sci., 58, 1035–1050.
    Landsea, C. W., 2000: El Nino–Southern Oscillation and the seasonal predictability of tropical cyclones. El Nino: Impacts of Multiscale Variability on Natural Ecosystems and Society, H. F. Diaz and V. Markgraf, Eds., Cambridge University Press, 149-181.
    Lau, K.-H., and N.-C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 2523-2539.
    Lau N.-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13, 4287–4309.
    ------, and ------, 2003: Atmosphere–Ocean Variations in the Indo-Pacific Sector during ENSO Episodes. J. Climate, 16, 3–20.
    ------, and ------, 2006: ENSO modulation of the interannual and intraseasonal variability of the East Asian monsoon—A model study. J. Climate, 19, 4508-4530.
    Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 1093-1102.
    Li, Y., R. Lu, and B. Dong, 2007: The ENSO–Asian Monsoon Interaction in a Coupled Ocean–Atmosphere GCM. J. Climate, 20, 5164–5177.
    Lin, I-I, W. T. Liu, C.-C. Wu, J. C. H. Chiang, and C.-H. Sui, 2003: Modulation of boundary layer winds by typhoon-induced upper ocean cooling, Geophys. Res. Lett., 30, 1131, doi:10.1029/2002GL015674.
    Lorenz E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157-167.
    ------, 1967: The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization.
    Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian Oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 2545-2558.
    ------, and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60, 2153-2168.
    May, W., 2003: The Indian summer monsoon and its sensitivity to the mean SSTs: Simulations with the ECHAM4 AGCM at T106 horizontal resolution. J. Meteor. Soc. Japan, 181, 57-83.
    McBride, J. L., 1995: Tropical cyclone formation. Global Perspective on Tropical Cyclones, WMO Tech Doc. 693, World Meteorological Organization, 63-105.
    Nitta T., 1987: Convective activities in the tropical western Pacific and their impacts on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373–390.
    Norquist, D. C., E. E. Recker, and R. J. Reed, 1977: The energetics of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 334-342.
    Oort A. H., 1964: On estimates of the atmospheric energy cycle. Mon. Wea. Rev., 92, 483-493.
    Philander, S. G. H., 1985: El Niño and La Niña. J. Atmos. Sci., 42, 2652-2662.
    Reynolds, R. W. and T. M. Smith, 1994: Improved global sea surface temperature analyses. J. Climate, 7, 929-948.
    Ritchie, E. A., 1995: Mesoscale aspects of tropical cyclone formation. Ph.D. dissertation, Center for Dynamical Meteorology and Oceanography, Monash University, Melbourne, Australia, 167pp.
    Robertson F. R. and P.J. Smith, 1983: The impact of model moist processes on the energetics of extratropical eyclones. Mon. Wea. Rev., 111, 723-744.
    Roeckner E., Coauthors, 1996: The atmospheric general circulation model ECHAM4: Model description and simulation of present day climate. Max Planck Institute for Meteorology Rep. 218.
    Shen, B.-W., R. Atlas, J.-D. Chern, O. Reale, S.-J. Lin, T. Lee, and J. Chang, 2006: The 0.125 degree finite-volume general circulation model on the NASA Columbia supercomputer: Preliminary simulations of mesoscale vortices. Geophysical Research Letters, 33, doi:10.1029/2005GL024594.
    Sobel A. H., and C. S. Bretherton, 1999: Development of synoptic-scale disturbances over the summertime tropical northwest Pacific. J. Atmos. Sci., 56, 3106-3127.
    ------, and S.J. Camargo, 2005: Influence of western North Pacific tropical cyclones on their large-scale environment. J. Atmos. Sci., 62, 3396-3407.
    Tam, C.-Y. and T. Li, 2006: The origin and dispersion characteristics of the observed summertime synoptic-scale waves over the western Pacific. Mon. Wea. Rev., 134, 1630-1646.
    Vitart F., J. L. Anderson, and W. F. Stern, 1997: Simulation of the interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10, 745-760.
    ------, J. L. Anderson, and W. F. Stern, 1999: Impact of large-scale circulation on tropical storm frequency, intensity, and location, simulated by an ensemble of GCM integrations. J. Climate, 12, 3237-3254.
    ------, D. Anderson, and T. Stockdale, 2003: Seasonal forecasting of tropical cyclone landfall over Mozambique. J. Climate, 16, 3932-3945.
    Walsh K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate dodels and reanalyses. J. Climate, 20, 2307-2314.
    Wang B., R. Wu, and X. Fu, 2000: Pacific-east Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536.
    ------, and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate., 15, 1643-1658.
    Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611-627.
    Yoo, S.H., C.H. Ho, S. Yang, H.J. Choi, and J.G. Jhun, 2004: Influences of Tropical Western and Extratropical Pacific SST on East and Southeast Asian Climate in the Summers of 1993–94. J. Climate, 17, 2673–2687.

    下載圖示
    QR CODE