簡易檢索 / 詳目顯示

研究生: Aban, Janus C.
Aban, Janus C.
論文名稱: 在大額外維度的背景下探索一些粒子物理異常
Probing Some Particle Physics Anomalies in the Context of Large Extra Dimensions
指導教授: 陳傳仁
Chen, Chuan-Ren
口試委員: 陳傳仁
Chen, Chuan-Ren
阮自強
Yuan, Tzu-Chiang
李湘楠
Li, Hsiang-Nan
卜宏毅
Pu, Hung-Yi
李沃龍
Lee, Wo-Lung
口試日期: 2024/06/27
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 160
英文關鍵詞: Large Extra Dimensions, Kaluza-Klein Modes
研究方法: 現象學
DOI URL: http://doi.org/10.6345/NTNU202400921
論文種類: 學術論文
相關次數: 點閱:103下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this dissertation, we probe three different anomalies in particle physics in the context of large extra dimensions (LEDs). The first anomaly refers to the lepton flavor universality violation (LFUV) found in b → sl+l− transition. Recently, the measurement of RK by LHCb supports the deviation on standard model (SM) predictions. The updated global fit preferred the muon Wilson coefficients to be Cbsμμ 9 = −Cbsμμ 10 = −0.41. Regarding this, we show that the contributions of all Kaluza-Klein (KK) modes of Dirac singlet neutrino propagating in the large extra dimensions explain the anomaly by naturally providing Cbsll9 = −Cbsll10. In particular, the muon Yukawa coupling strength hμ = 5 and two extra spatial dimensions suggest that the fundamental scale MF of the extra dimensions must be reduced to around 20 TeV. The second anomaly is about the anomalous values of RD(∗) . Recent measurements of RD(∗) by LHCb determine a significant discrepancy from its SM predictions. These values are associated with semi-leptonic B meson decays fueled by b → cτ ¯ν transition. The anomaly signals a new physics (NP) beyond the SM by violating lepton flavor universality. In our work, we show that the cumulative effects of the KK modes of right-handed singlet neutrino propagating in the large extra dimensions provide an explanation of the anomaly. As a result, the number of extra dimensions must be two to address RD(∗) . The fitting of the fundamental scale MF corresponds to the experimental values of RD and RD∗ , and it is in good agreement with experimental bounds from the lepton flavor violation in τ decays. However, the most stringent constraints from the neutrino experiments set new lower limits of MF , which are in tension to our findings. Therefore, if the central values of RD(∗) remain with smaller uncertainties using the future data, then the extra-dimensional framework with right-handed neutrinos propagating in the bulk will be excluded. Lastly, we address the puzzling Gamma Ray Burst GRB221009A event. In particular, the LHAASO and Carpet- 2 collaboration detected very energetic photons up to maximum energies of 18 TeV and 251 TeV, respectively. Observing such photons from a vast distance remains a mystery due to the severe attenuation from the extra background light (EBL) before the photons arrive on Earth. A possible remedy is the existence of axion-like particles (ALPs). The flux of very energetic photons from a host galaxy is converted into ALPS that travel intergalactically, unhindered by the EBL. In our third paper, we explore the effect of extra dimensions on the conversion probability of photons into ALPs. The conversion probability of very energetic photons may reach almost 100% and will saturate eventually. We show that the energies where the saturation occurs are affected by the size of the extra dimensions. Consequently, smaller extra dimensions are favored for detecting very energetic photons.

    1 Introduction 1 2 Brief Review of the Standard Model and Related Concepts 6 2.1 The SM Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 The Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Triumphs and Shortcomings of the SM 16 2.4 Particle Physics Anomalies 23 3 Theory of Extra Dimensions 31 3.1 The Kaluza-Klein Decomposition 32 3.2 The ADD Theory 33 3.3 The ADD and 4D Theory Correspondence 35 3.4 Compactification of Right-Handed Neutrino and Generating Neutrino Mass in ADD Theory 37 4 Lepton Universality Violation by Kaluza-Klein Neutrinos Concerning b → sll Transition 41 4.1 Extra-Dimensional Model with a Dirac Singlet Neutrino 41 4.2 b → sll Transition and Relevant Constraints 49 5 Kaluza-Klein Neutrinos Effect to RD(∗) 58 5.1 Extra-Dimensional Framework with Three Right-Handed Neutrinos 58 5.2 b → cτ ¯ν(KK) τ Transition and Relevant Constraints . . 63 5.3 Related Constraints Coming from W Boson Decay and τ Decays 66 6 Impacts of Gamma Ray Burst GRB221009A for Extra Dimensions 72 6.1 Extra-Dimensional Framework with Axion-Like Particles 72 6.2 Conversion Probability of Photon to Kaluza-Klein Axions 75 6.3 Results and Discussion 81 7 Conclusion 91 References 95 A Appendix 124 A.1 Summation of KK modes 124 A.2 Mixing Parameters Derivation in Sec. 4.1 125 A.3 Amplitude of b → sl1¯l2 Transition 128 A.4 Loop Function Fbox(x, y) Approximation135 A.5 Continuous Replacement of Fbsl1l2 box (x, y) 136 A.6 Mixing Parameters Derivation in Sec. 5.1 140 A.7 b → cτ ¯ν(KK) τ Transition Associated Amplitude 142 A.8 Three-Body Decay and Associated Decay Rate 152 A.9 Conversion Probability of Photon to Kaluza-Klein Axions 158 A.10 Coefficients f2 0 and f2 γ 160

    [1]  Roel Aaij et al. “Test of lepton universality in beauty-quark decays”. In: Nature Phys. 18.3 (2022). [Addendum: Nature Phys. 19, (2023)], pp. 277–282. doi: 10. 1038/s41567-023-02095-3. arXiv: 2103.11769 [hep-ex].
    [2]  Wolfgang Altmannshofer and Peter Stangl. “New physics in rare B decays after Moriond 2021”. In: Eur. Phys. J. C 81.10 (2021), p. 952. doi: 10.1140/epjc/ s10052-021-09725-1. arXiv: 2103.13370 [hep-ph].
    [3]  Svjetlana Fajfer, Jernej F. Kamenik, and Ivan Nisandzic. “On the B → D∗τν ̄τ Sensitivity to New Physics”. In: Phys. Rev. D 85 (2012), p. 094025. doi: 10. 1103/PhysRevD.85.094025. arXiv: 1203.2654 [hep-ph].
    [4]  Marat Freytsis, Zoltan Ligeti, and Joshua T. Ruderman. “Flavor models for B ̄ → D(∗)τν ̄”. In: Phys. Rev. D 92.5 (2015), p. 054018. doi: 10.1103/PhysRevD.92. 054018. arXiv: 1506.08896 [hep-ph].
    [5]  Debajyoti Choudhury et al. “Unified resolution of the R(D) and R(D∗) anomalies and the lepton flavor violating decay h → μτ”. In: Phys. Rev. D 95.3 (2017), p. 035021. doi: 10.1103/PhysRevD.95.035021. arXiv: 1612.03517 [hep-ph].
    [6]  Debajyoti Choudhury, Dilip Kumar Ghosh, and Anirban Kundu. “B decay anoma- lies in an effective theory”. In: Phys. Rev. D 86 (2012), p. 114037. doi: 10.1103/ PhysRevD.86.114037. arXiv: 1210.5076 [hep-ph].
    [7]  Quan-Yi Hu, Xin-Qiang Li, and Ya-Dong Yang. “b → cτν transitions in the stan- dard model effective field theory”. In: Eur. Phys. J. C 79.3 (2019), p. 264. doi: 10.1140/epjc/s10052-019-6766-8. arXiv: 1810.04939 [hep-ph].
    [8]  Gudrun Hiller, Dennis Loose, and Ivan Niˇsandˇzi ́c. “Flavorful leptoquarks at the LHC and beyond: spin 1”. In: JHEP 06 (2021), p. 080. doi: 10.1007/JHEP06(2021) 080. arXiv: 2103.12724 [hep-ph].
    [9]  Ben Gripaios, Marco Nardecchia, and S. A. Renner. “Composite leptoquarks and anomalies in B-meson decays”. In: JHEP 05 (2015), p. 006. doi: 10.1007/ JHEP05(2015)006. arXiv: 1412.1791 [hep-ph].
    [10]  Riccardo Barbieri, Christopher W. Murphy, and Fabrizio Senia. “B-decay Anoma- lies in a Composite Leptoquark Model”. In: Eur. Phys. J. C 77.1 (2017), p. 8. doi: 10.1140/epjc/s10052-016-4578-7. arXiv: 1611.04930 [hep-ph].
    [11]  Bartosz Fornal, Sri Aditya Gadam, and Benjamin Grinstein. “Left-Right SU(4) Vector Leptoquark Model for Flavor Anomalies”. In: Phys. Rev. D 99.5 (2019), p. 055025. doi: 10.1103/PhysRevD.99.055025. arXiv: 1812.01603 [hep-ph].
    [12]  Claudia Cornella, Javier Fuentes-Martin, and Gino Isidori. “Revisiting the vector leptoquark explanation of the B-physics anomalies”. In: JHEP 07 (2019), p. 168. doi: 10.1007/JHEP07(2019)168. arXiv: 1903.11517 [hep-ph].
    [13]  Janus Capellan Aban, Chuan-Ren Chen, and Chrisna Setyo Nugroho. “Lepton universality violation by Kaluza-Klein neutrinos in b→sll transition”. In: Phys. Lett. B 830 (2022), p. 137164. doi: 10.1016/j.physletb.2022.137164. arXiv: 2112.12477 [hep-ph].
    [14]  Yasmine Sara Amhis et al. “Averages of b-hadron, c-hadron, and τ-lepton proper- ties as of 2021”. In: Phys. Rev. D 107.5 (2023), p. 052008. doi: 10.1103/PhysRevD. 107.052008. arXiv: 2206.07501 [hep-ex].
    [15]  Syuhei Iguro, Teppei Kitahara, and Ryoutaro Watanabe. “Global fit to b → cτν anomalies 2022 mid-autumn”. In: (Oct. 2022). arXiv: 2210.10751 [hep-ph].
    [16]  In: https://indico .cern .ch /event /1231797/ ().
    [17]  M. Tanaka. “Charged Higgs effects on exclusive semitauonic B decays”. In: Z. Phys. 
C 67 (1995), pp. 321–326. doi: 10.1007/BF01571294. arXiv: hep-ph/9411405.
    [18]  Alejandro Celis et al. “Sensitivity to charged scalars in B → D(∗)τ ντ and B → τ ντ decays”. In: JHEP 01 (2013), p. 054. doi: 10.1007/JHEP01(2013)054. arXiv: 1210.8443 [hep-ph].
    [19]  Alejandro Celis et al. “Scalar contributions to b → c(u)τν transitions”. In: Phys. Lett. B 771 (2017), pp. 168–179. doi: 10.1016/j.physletb.2017.05.037. arXiv: 1612.07757 [hep-ph].
    [20]  Syuhei Iguro and Kazuhiro Tobe. “R(D(∗)) in a general two Higgs doublet model”. In: Nucl. Phys. B 925 (2017), pp. 560–606. doi: 10.1016/j.nuclphysb.2017.10. 014. arXiv: 1708.06176 [hep-ph].
    [21]  Sean Fraser et al. “Towards a viable scalar interpretation of RD(∗) ”. In: Phys. Rev. D 98.3 (2018), p. 035016. doi: 10.1103/PhysRevD.98.035016. arXiv: 1805.08189 [hep-ph].
    [22]  R. Martinez, C. F. Sierra, and German Valencia. “Beyond R(D(∗)) with the general type-III 2HDM for b → cτν”. In: Phys. Rev. D 98.11 (2018), p. 115012. doi: 10.1103/PhysRevD.98.115012. arXiv: 1805.04098 [hep-ph].
    [23]  Andreas Crivellin, Christoph Greub, and Ahmet Kokulu. “Explaining B → Dτν, B → D∗τν and B → τν in a 2HDM of type III”. In: Phys. Rev. D 86 (2012), p. 054014. doi: 10.1103/PhysRevD.86.054014. arXiv: 1206.2634 [hep-ph].
    [24]  Eugenio Megias, Mariano Quiros, and Lindber Salas. “Lepton-flavor universality violation in RK and RD(∗) from warped space”. In: JHEP 07 (2017), p. 102. doi: 10.1007/JHEP07(2017)102. arXiv: 1703.06019 [hep-ph].
    [25]  Xiao-Gang He and German Valencia. “Lepton universality violation and right- handed currents in b → cτν”. In: Phys. Lett. B 779 (2018), pp. 52–57. doi: 10. 1016/j.physletb.2018.01.073. arXiv: 1711.09525 [hep-ph].
    [26]  Shinya Matsuzaki, Kenji Nishiwaki, and Ryoutaro Watanabe. “Phenomenology of flavorful composite vector bosons in light of B anomalies”. In: JHEP 08 (2017), p. 145. doi: 10.1007/JHEP08(2017)145. arXiv: 1706.01463 [hep-ph].
    [27]  K. S. Babu, Bhaskar Dutta, and Rabindra N. Mohapatra. “A theory of R(D∗, D) anomaly with right-handed currents”. In: JHEP 01 (2019), p. 168. doi: 10.1007/ JHEP01(2019)168. arXiv: 1811.04496 [hep-ph].
    [28]  Admir Greljo et al. “R(D()) from W and right-handed neutrinos”. In: JHEP 09 (2018), p. 169. doi: 10.1007/JHEP09(2018)169. arXiv: 1804.04642 [hep-ph].
    [29]  Pouya Asadi, Matthew R. Buckley, and David Shih. “It’s all right(-handed neu- trinos): a new W model for the RD(∗) anomaly”. In: JHEP 09 (2018), p. 010. doi: 10.1007/JHEP09(2018)010. arXiv: 1804.04135 [hep-ph].
    [30]  Oleg Popov, Michael A. Schmidt, and Graham White. “R2 as a single leptoquark solution to RD(∗) and RK(∗)”. In: Phys. Rev. D 100.3 (2019), p. 035028. doi: 10. 1103/PhysRevD.100.035028. arXiv: 1905.06339 [hep-ph].
    [31]  Janus Capellan Aban, Chuan-Ren Chen, and Chrisna Setyo Nugroho. “Effects of Kaluza-Klein neutrinos on RD and RD∗”. In: Phys. Lett. B 848 (2024), p. 138304. doi: 10.1016/j.physletb.2023.138304. arXiv: 2305.10305 [hep-ph].
    [32]  Y. Huang et al. In: GCN Circ. No. 32677 (2022).
    [33]  Zhen Cao et al. “A tera–electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst”. In: Science 380.6652 (2023), adg9328. doi: 10.1126/ science.adg9328. arXiv: 2306.06372 [astro-ph.HE].
    [34]  D. Dzhappuev et al. In: The Astronomer’s Telegram 15669 (2022).
    [35]  P. Veres et al. In: GCN Circ. No. 32636 (2022).
    [36]  Robert Gould and Gerald Schr ́eder. “Opacity of the Universe to High-Energy Pho- tons”. In: Phys. Rev. Lett. 16.6 (1966), pp. 252–254. doi: 10.1103/PhysRevLett. 16.252.
    [37]  G. G. Fazio and F. W. Stecker. “Predicted high energy break in the isotropic gamma-ray spectrum: A Test of cosmological origin”. In: Nature 226 (1970), pp. 135– 136. doi: 10.1038/226135a0.
    [38]  R. J. Protheroe and H. Meyer. “An Infrared background TeV gamma-ray crisis?” In: Phys. Lett. B 493 (2000), pp. 1–6. doi: 10.1016/S0370-2693(00)01113-8. arXiv: astro-ph/0005349.
    [39]  Hao Li and Bo-Qiang Ma. “Lorentz invariance violation induced threshold anomaly versus very-high energy cosmic photon emission from GRB 221009A”. In: As- tropart. Phys. 148 (2023), p. 102831. doi: 10.1016/j.astropartphys.2023. 102831. arXiv: 2210.06338 [astro-ph.HE].
    [40]  Ali Baktash, Dieter Horns, and Manuel Meyer. “Interpretation of multi-TeV pho- tons from GRB221009A”. In: (Oct. 2022). arXiv: 2210.07172 [astro-ph.HE].
    [41]  Justin D. Finke and Soebur Razzaque. “Possible Evidence for Lorentz Invariance Violation in Gamma-Ray Burst 221009A”. In: Astrophys. J. Lett. 942.1 (2023), p. L21. doi: 10.3847/2041-8213/acade1. arXiv: 2210.11261 [astro-ph.HE].
    [42]  Jie Zhu and Bo-Qiang Ma. “Light speed variation from GRB 221009A”. In: J. Phys. G 50.6 (2023), 06LT01. doi: 10.1088/1361-6471/accebb. arXiv: 2210.11376 [astro-ph.HE].
    [43]  Kingman Cheung. “The Role of a Heavy Neutrino in the Gamma-Ray Burst GRB- 221009A”. In: (Oct. 2022). arXiv: 2210.14178 [hep-ph].
    [44]  Alexei Y. Smirnov and Andreas Trautner. “GRB 221009A Gamma Rays from the Radiative Decay of Heavy Neutrinos?” In: Phys. Rev. Lett. 131.2 (2023), p. 021002. doi: 10.1103/PhysRevLett.131.021002. arXiv: 2211.00634 [hep-ph].
    [45]  Vedran Brdar and Ying-Ying Li. “Neutrino origin of LHAASO’s 18 TeV GRB221009A photon”. In: Phys. Lett. B 839 (2023), p. 137763. doi: 10.1016/j.physletb. 2023.137763. arXiv: 2211.02028 [hep-ph].
    [46]  Jihong Huang et al. “Invisible neutrino decays as origin of TeV gamma rays from GRB221009A”. In: JCAP 04 (2023), p. 056. doi: 10.1088/1475-7516/2023/04/ 056. arXiv: 2212.03477 [hep-ph].
    [47]  Shu-Yuan Guo et al. “Can sterile neutrinos explain the very high energy photons from GRB221009A?” In: Phys. Rev. D 108.2 (2023), p. L021302. doi: 10.1103/ PhysRevD.108.L021302. arXiv: 2301.03523 [hep-ph].
    [48]  Giorgio Galanti et al. “Observability of the Very-High-Energy Emission from GRB 221009A”. In: Phys. Rev. Lett. 131.25 (2023), p. 251001. doi: 10.1103/PhysRevLett. 131.251001. arXiv: 2210.05659 [astro-ph.HE].
    [49]  S. V. Troitsky. “Parameters of axion-like particles required to explain high-energy photons from GRB 221009A”. In: Pisma Zh. Eksp. Teor. Fiz. 116.11 (2022),pp. 745–746. doi: 10.31857/S123456782223001X. arXiv: 2210.09250 [astro-ph.HE].
    [50]  Shota Nakagawa et al. “Axion dark matter from first-order phase transition, and very high energy photons from GRB 221009A”. In: Phys. Lett. B 839 (2023), p. 137824. doi: 10.1016/j.physletb.2023.137824. arXiv: 2210.10022 [hep-ph].
    [51]  Guangshuai Zhang and Bo-Qiang Ma. “Axion-Photon Conversion of LHAASO Multi-TeV and PeV Photons”. In: Chin. Phys. Lett. 40.1 (2023), p. 011401. doi: 10.1088/0256-307X/40/1/011401. arXiv: 2210.13120 [hep-ph].
    [52]  Luohan Wang and Bo-Qiang Ma. “Axion-photon conversion of GRB221009A”. In: Phys. Rev. D 108.2 (2023), p. 023002. doi: 10.1103/PhysRevD.108.023002. arXiv: 2304.01819 [astro-ph.HE].
    [53]  Janus Capellan Aban et al. “Implications of Gamma Ray Burst GRB221009A for Extra Dimensions”. In: (Dec. 2023). arXiv: 2312.03314 [hep-ph].
    [54]  D. V. Forero et al. “Large extra dimensions and neutrino experiments”. In: Phys. Rev. D 106.3 (2022), p. 035027. doi: 10.1103/PhysRevD.106.035027. arXiv: 2207.02790 [hep-ph].
    [55]  Cedric Deffayet and Jean-Philippe Uzan. “Photon mixing in universes with large extra dimensions”. In: Phys. Rev. D 62 (2000), p. 063507. doi: 10.1103/PhysRevD. 62.063507. arXiv: hep-ph/0002129.
    [56]  Keith R. Dienes, Emilian Dudas, and Tony Gherghetta. “Invisible axions and large radius compactifications”. In: Phys. Rev. D 62 (2000), p. 105023. doi: 10.1103/ PhysRevD.62.105023. arXiv: hep-ph/9912455.
    [57]  L. Di Lella et al. “Search for solar Kaluza-Klein axions in theories of low scale quantum gravity”. In: Phys. Rev. D 62 (2000), p. 125011. doi: 10.1103/PhysRevD. 62.125011. arXiv: hep-ph/0006327.
    [58]  Sanghyeon Chang, Shiro Tazawa, and Masahiro Yamaguchi. “Axion model in extra dimensions with TeV scale gravity”. In: Phys. Rev. D 61 (2000), p. 084005. doi: 10.1103/PhysRevD.61.084005. arXiv: hep-ph/9908515.
    [59]  Weikang Lin and Tsutomu T. Yanagida. “Electroweak Axion in Light of GRB221009A”. In: Chin. Phys. Lett. 40.6 (2023), p. 069801. doi: 10.1088/0256-307X/40/6/ 069801. arXiv: 2210.08841 [hep-ph].
    [60]  Christopher Eckner and Francesca Calore. “First constraints on axionlike particles from Galactic sub-PeV gamma rays”. In: Phys. Rev. D 106.8 (2022), p. 083020. doi: 10.1103/PhysRevD.106.083020. arXiv: 2204.12487 [astro-ph.HE].
    [61]  Christopher Dessert, David Dunsky, and Benjamin R. Safdi. “Upper limit on the axion-photon coupling from magnetic white dwarf polarization”. In: Phys. Rev. D 105.10 (2022), p. 103034. doi: 10.1103/PhysRevD.105.103034. arXiv: 2203. 04319 [hep-ph].
    [62]  Ludmilla Dirson and Dieter Horns. “Phenomenological modelling of the Crab Neb- ula’s broadband energy spectrum and its apparent extension”. In: Astron. Astro- phys. 671 (2023), A67. doi: 10.1051/0004-6361/202243578. arXiv: 2203.11502 [astro-ph.HE].
    [63]  S. L. Glashow. “Partial Symmetries of Weak Interactions”. In: Nucl. Phys. 22 (1961), pp. 579–588. doi: 10.1016/0029-5582(61)90469-2.
    [64]  Steven Weinberg. “A Model of Leptons”. In: Phys. Rev. Lett. 19 (1967), pp. 1264– 1266. doi: 10.1103/PhysRevLett.19.1264.
    [65]  A. Salam. “Elementary Particle Theory”. In: ed. N. Svartholm, Almqvist and Wik- sells, Stockholm 19 (1969), p. 367.
    [66]  Chen-Ning Yang and Robert L. Mills. “Conservation of Isotopic Spin and Isotopic Gauge Invariance”. In: Phys. Rev. 96 (1954). Ed. by Jong-Ping Hsu and D. Fine, pp. 191–195. doi: 10.1103/PhysRev.96.191.
    [67]  D. Mungo et al. “Measurement of Higgs boson production cross sections in the diphoton decay channel with 80 fb1 of pp collision data collected by the ATLAS detector”. In: (Master’s thesis, Universita` degli studi di Milano, 2018).
    [68]  Nicola Cabibbo. “Unitary Symmetry and Leptonic Decays”. In: Phys. Rev. Lett. 10 (12 1963), pp. 531–533. doi: 10.1103/PhysRevLett.10.531. url: https: //link.aps.org/doi/10.1103/PhysRevLett.10.531.
    [69]  Makoto Kobayashi and Toshihide Maskawa. “CP Violation in the Renormalizable Theory of Weak Interaction”. In: Prog. Theor. Phys. 49 (1973), pp. 652–657. doi: 10.1143/PTP.49.652.
    [70]  X. Fan et al. “Measurement of the Electron Magnetic Moment”. In: Phys. Rev. Lett. 130.7 (2023), p. 071801. doi: 10.1103/PhysRevLett.130.071801. arXiv: 2209.13084 [physics.atom-ph].
    [71]  B. A. Dobrescu. “Beyond the Standard Model”. In: 2011 European School of High- Energy Physics. Geneva: CERN, 2014, pp. 119–149. doi: 10.5170/CERN-2014- 003.119.
    [72]  B. C. Allanach. “Beyond the Standard Model Lectures for the 2016 European School of High-Energy Physics”. In: 2016 European School of High-Energy Physics. 2017, pp. 123–152. doi: 10.23730/CYRSP-2017-005.123. arXiv: 1609.02015 [hep-ph].
    [73]  Michael J. Dugan, Howard Georgi, and David B. Kaplan. “Anatomy of a Composite Higgs Model”. In: Nucl. Phys. B 254 (1985), pp. 299–326. doi: 10.1016/0550- 3213(85)90221-4.
    [74]  R. Sekhar Chivukula. “Models of electroweak symmetry breaking: Course”. In: Les Houches Summer School in Theoretical Physics, Session 68: Probing the Standard Model of Particle Interactions. Mar. 1998, pp. 1339–1407. arXiv: hep-ph/9803219.
    [75]  Roberto Contino, Yasunori Nomura, and Alex Pomarol. “Higgs as a holographic pseudoGoldstone boson”. In: Nucl. Phys. B 671 (2003), pp. 148–174. doi: 10. 1016/j.nuclphysb.2003.08.027. arXiv: hep-ph/0306259.
    [76]  G. F. Giudice et al. “The Strongly-Interacting Light Higgs”. In: JHEP 06 (2007), p. 045. doi: 10.1088/1126-6708/2007/06/045. arXiv: hep-ph/0703164.
    [77]  Nima Arkani-Hamed, Andrew G. Cohen, and Howard Georgi. “Electroweak sym- metry breaking from dimensional deconstruction”. In: Phys. Lett. B 513 (2001), pp. 232–240. doi: 10.1016/S0370-2693(01)00741-9. arXiv: hep-ph/0105239.
    [78]  N. Arkani-Hamed et al. “The Littlest Higgs”. In: JHEP 07 (2002), p. 034. doi: 10.1088/1126-6708/2002/07/034. arXiv: hep-ph/0206021.
    [79]  N. Arkani-Hamed et al. “The Minimal moose for a little Higgs”. In: JHEP 08 (2002), p. 021. doi: 10.1088/1126-6708/2002/08/021. arXiv: hep-ph/0206020.
    [80]  Hsin-Chia Cheng and Ian Low. “TeV symmetry and the little hierarchy problem”. In: JHEP 09 (2003), p. 051. doi: 10.1088/1126-6708/2003/09/051. arXiv: hep-ph/0308199.
    [81]  Nima Arkani-Hamed, Savas Dimopoulos, and G. R. Dvali. “The Hierarchy problem and new dimensions at a millimeter”. In: Phys. Lett. B 429 (1998), pp. 263–272. doi: 10.1016/S0370-2693(98)00466-3. arXiv: hep-ph/9803315.
    [82]  J. G. Lee et al. “New Test of the Gravitational 1/r2 Law at Separations down to 52 μm”. In: Phys. Rev. Lett. 124.10 (2020), p. 101101. doi: 10.1103/PhysRevLett. 124.101101. arXiv: 2002.11761 [hep-ex].
    [83]  Georges Aad et al. “Search for new phenomena in events with an energetic jet and missing transverse momentum in pp collisions at √s =13 TeV with the ATLAS detector”. In: Phys. Rev. D 103.11 (2021), p. 112006. doi: 10.1103/PhysRevD. 103.112006. arXiv: 2102.10874 [hep-ex].
    [84]  L.H. Ryder. “Symmetries and Conservation Laws”. In: Encyclopedia of Mathe- matical Physics. Ed. by Jean-Pierre Fran ̧coise, Gregory L. Naber, and Tsou She- ung Tsun. Oxford: Academic Press, 2006, pp. 166–172. isbn: 978-0-12-512666-3. doi: https://doi.org/10.1016/B0-12-512666-2/00459-4. url: https: //www.sciencedirect.com/science/article/pii/B0125126662004594.
    [85]  Stephen P. Martin. “A Supersymmetry primer”. In: Adv. Ser. Direct. High Energy Phys. 18 (1998). Ed. by Gordon L. Kane, pp. 1–98. doi: 10.1142/9789812839657_ 0001. arXiv: hep-ph/9709356.
    [86]  F. Zwicky. “Die Rotverschiebung von extragalaktischen Nebeln”. In: Helv. Phys. Acta 6 (1933), pp. 110–127. doi: 10.1007/s10714-008-0707-4.
    [87]  F. Zwicky. “On the Masses of Nebulae and of Clusters of Nebulae”. In: Astrophys. J. 86 (1937), pp. 217–246. doi: 10.1086/143864.
    [88]  K. G. Begeman. “H I rotation curves of spiral galaxies. I - NGC 3198”. In: Astron. Astrophys. 223 (1989), pp. 47–60.
    [89]  D. Walsh, R. F. Carswell, and R. J. Weymann. “0957 + 561 A, B - Twin quasistellar objects or gravitational lens”. In: Nature 279 (1979), pp. 381–384. doi: 10.1038/ 279381a0.
    [90]  R. Lynds and V. Petrosian. “Luminous arcs in clusters of galaxies”. In: Ap.J. 336 (1989), p. 1.
    [91]  P. Tisserand et al. “Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds”. In: Astron. Astrophys. 469 (2007), pp. 387–404. doi: 10.1051/0004-6361:20066017. arXiv: astro-ph/0607207.
    [92]  Vera C. Rubin and W. Kent Ford Jr. “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions”. In: Astrophys. J. 159 (1970), pp. 379– 403. doi: 10.1086/150317.
    [93]  Vera C. Rubin, W. Kent Ford Jr., and Norbert Thonnard. “Extended rotation curves of high-luminosity spiral galaxies. IV. Systematic dynamical properties, Sa through Sc”. In: Astrophys. J. Lett. 225 (1978), pp. L107–L111. doi: 10.1086/ 182804.
    [94]  B. J. Carr et al. “New cosmological constraints on primordial black holes”. In: Phys. Rev. D 81 (2010), p. 104019. doi: 10.1103/PhysRevD.81.104019. arXiv: 0912.5297 [astro-ph.CO].
    [95]  Gary Steigman and Michael S. Turner. “Cosmological Constraints on the Prop- erties of Weakly Interacting Massive Particles”. In: Nucl. Phys. B 253 (1985), pp. 375–386. doi: 10.1016/0550-3213(85)90537-1.
    [96]  Jonathan L. Feng, Marc Kamionkowski, and Samuel K. Lee. “Light Gravitinos at Colliders and Implications for Cosmology”. In: Phys. Rev. D 82 (2010), p. 015012. doi: 10.1103/PhysRevD.82.015012. arXiv: 1004.4213 [hep-ph].
    [97]  R. D. Peccei and Helen R. Quinn. “CP Conservation in the Presence of Instantons”. In: Phys. Rev. Lett. 38 (1977), pp. 1440–1443. doi: 10.1103/PhysRevLett.38. 1440.
    [98]  G. Steigman. “Observational tests of antimatter cosmologies”. In: Ann. Rev. As- tron. Astrophys. 14 (1976), pp. 339–372. doi: 10.1146/annurev.aa.14.090176. 002011.
    [99]  A. D. Sakharov. “Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe”. In: Pisma Zh. Eksp. Teor. Fiz. 5 (1967), pp. 32–35. doi: 10.1070/ PU1991v034n05ABEH002497.
    [100]  J. H. Christenson et al. “Evidence for the 2π Decay of the K20 Meson”. In: Phys. Rev. Lett. 13 (1964), pp. 138–140. doi: 10.1103/PhysRevLett.13.138.
    [101]  Gonzalo Alonso-A ́lvarez, Gilly Elor, and Miguel Escudero. “Collider signals of baryogenesis and dark matter from B mesons: A roadmap to discovery”. In: Phys. Rev. D 104.3 (2021), p. 035028. doi: 10.1103/PhysRevD.104.035028. arXiv: 2101.02706 [hep-ph].
    [102]  Antonio Riotto. “Theories of baryogenesis”. In: ICTP Summer School in High- Energy Physics and Cosmology. July 1998, pp. 326–436. arXiv: hep-ph/9807454.
    [103]  Kenneth G. Wilson. “The Renormalization Group and Strong Interactions”. In: Phys. Rev. D 3 (1971), p. 1818. doi: 10.1103/PhysRevD.3.1818.
    [104]  Eldad Gildener. “Gauge Symmetry Hierarchies”. In: Phys. Rev. D 14 (1976), p. 1667. doi: 10.1103/PhysRevD.14.1667.
    [105]  Steven Weinberg. “Gauge Hierarchies”. In: Phys. Lett. B 82 (1979), pp. 387–391. doi: 10.1016/0370-2693(79)90248-X.
    [106]  Gerard ’t Hooft et al., eds. Recent Developments in Gauge Theories. Proceedings, Nato Advanced Study Institute, Cargese, France, August 26 - September 8, 1979. Vol. 59. 1980, pp.1–438. doi: 10.1007/978-1-4684-7571-5.
    [107]  Gian F. Giudice. “Naturalness after LHC8”. In: PoS EPS-HEP2013 (2013), p. 163. doi: 10.22323/1.180.0163. arXiv: 1307.7879 [hep-ph].
    [108]  Nathaniel Craig. “Naturalness: past, present, and future”. In: Eur. Phys. J. C 83.9 (2023), p. 825. doi: 10.1140/epjc/s10052-023-11928-7. arXiv: 2205.05708 [hep-ph].
    [109]  Stefan Nobbenhuis. “Categorizing different approaches to the cosmological con- stant problem”. In: Found. Phys. 36 (2006), pp. 613–680. doi: 10.1007/s10701- 005-9042-8. arXiv: gr-qc/0411093.
    [110]  Michael Dine. “TASI lectures on the strong CP problem”. In: Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2000): Flavor Physics for the Millennium. June 2000, pp. 349–369. arXiv: hep-ph/0011376.
    [111]  Anson Hook. “TASI Lectures on the Strong CP Problem and Axions”. In: PoS TASI2018 (2019), p. 004. arXiv: 1812.02669 [hep-ph].
    [112]  R. D. Peccei. “The Strong CP problem and axions”. In: Lect. Notes Phys. 741 (2008). Ed. by Markus Kuster, Georg Raffelt, and Berta Beltran, pp. 3–17. doi: 10.1007/978-3-540-73518-2_1. arXiv: hep-ph/0607268.
    [113]  Andreas Crivellin and Bruce Mellado. “Anomalies in Particle Physics”. In: (Sept. 2023). doi: 10.1038/s42254-024-00703-6. arXiv: 2309.03870 [hep-ph].
    [114]  Julian S. Schwinger. “On Quantum electrodynamics and the magnetic moment of the electron”. In: Phys. Rev. 73 (1948), pp. 416–417. doi: 10.1103/PhysRev.73. 416.
    [115] B. Abi et al. “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm”. In: Phys. Rev. Lett. 126.14 (2021), p. 141801. doi: 10 . 1103 /PhysRevLett.126.141801. arXiv: 2104.03281 [hep-ex].
    [116] D. P. Aguillard et al. “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm”. In: Phys. Rev. Lett. 131.16 (2023), p. 161802. doi: 10.1103/PhysRevLett.131.161802. arXiv: 2308.06230 [hep-ex].
    [117] G. W. Bennett et al. “Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL”. In: Phys. Rev. D 73 (2006), p. 072003. doi: 10.1103/PhysRevD.73.072003. arXiv: hep-ex/0602035.
    [118] Tatsumi Aoyama, Toichiro Kinoshita, and Makiko Nio. “Theory of the Anomalous Magnetic Moment of the Electron”. In: Atoms 7.1 (2019), p. 28. doi: 10.3390/atoms7010028.
    [119] Gilberto Colangelo, Martin Hoferichter, and Peter Stoffer. “Two-pion contribution to hadronic vacuum polarization”. In: JHEP 02 (2019), p. 006. doi: 10.1007/ JHEP02(2019)006. arXiv: 1810.00007 [hep-ph].
    [120] M. Davier et al. “A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(m2 Z)”. In: Eur.Phys. J. C 80.3 (2020). [Erratum: Eur.Phys.J.C 80, 410 (2020)], p. 241. doi: 10.1140/epjc/s10052-020-7792-2. arXiv: 1908.00921 [hep-ph].
    [121] Alexander Keshavarzi, Daisuke Nomura, and Thomas Teubner. “g − 2 of charged leptons, α(M2Z) , and the hyperfine splitting of muonium”. In: Phys. Rev. D 101.1 (2020), p. 014029. doi: 10 . 1103 / PhysRevD . 101 . 014029. arXiv: 1911 . 00367[hep-ph].
    [122] Sz. Borsanyi et al. “Leading hadronic contribution to the muon magnetic moment from lattice QCD”. In: Nature 593.7857 (2021), pp. 51–55. doi: 10.1038/s41586-021-03418-1. arXiv: 2002.12347 [hep-lat]
    [123] F. V. Ignatov et al. “Measurement of the e+e− → π+π− cross section from threshold to 1.2 GeV with the CMD-3 detector”. In: (Feb. 2023). arXiv: 2302.08834[hep-ex].
    [124] D. Hanneke, S. Fogwell, and G. Gabrielse. “New Measurement of the Electron Magnetic Moment and the Fine Structure Constant”. In: Phys. Rev. Lett. 100 (2008), p. 120801. doi: 10.1103/PhysRevLett.100.120801. arXiv: 0801.1134[physics.atom-ph].
    [125] Tatsumi Aoyama, Toichiro Kinoshita, and Makiko Nio. “Revised and Improved Value of the QED Tenth-Order Electron Anomalous Magnetic Moment”. In: Phys.Rev. D 97.3 (2018), p. 036001. doi: 10.1103/PhysRevD.97.036001. arXiv: 1712.06060 [hep-ph].
    [126] Stefano Laporta. “High-precision calculation of the 4-loop contribution to the electron g-2 in QED”. In: Phys. Lett. B 772 (2017), pp. 232–238. doi: 10.1016/j.physletb.2017.06.056. arXiv: 1704.06996 [hep-ph].
    [127] Andreas Crivellin, Martin Hoferichter, and Philipp Schmidt-Wellenburg. “Combined explanations of (g − 2)μ,e and implications for a large muon EDM”. In: Phys. Rev. D 98.11 (2018), p. 113002. doi: 10 . 1103 / PhysRevD . 98 . 113002. arXiv: 1807.11484 [hep-ph].
    [128] A. Djouadi et al. “(e b), (e t) TYPE LEPTOQUARKS AT e p COLLIDERS”. In: Z. Phys. C 46 (1990), pp. 679–686. doi: 10.1007/BF01560270.
    [129] Martin Bauer and Matthias Neubert. “Minimal Leptoquark Explanation for the RD(∗) , RK , and (g−2)μ Anomalies”. In: Phys. Rev. Lett. 116.14 (2016), p. 141802. doi: 10.1103/PhysRevLett.116.141802. arXiv: 1511.01900 [hep-ph].
    [130] A. Aguilar et al. “Evidence for neutrino oscillations from the observation of .νe appearance in a .νμ beam”. In: Phys. Rev. D 64 (2001), p. 112007. doi: 10.1103/PhysRevD.64.112007. arXiv: hep-ex/0104049.
    [131] A. A. Aguilar-Arevalo et al. “Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment”. In: Phys. Rev. Lett. 121.22(2018), p. 221801. doi: 10.1103/PhysRevLett.121.221801. arXiv: 1805.12028 [hep-ex].
    [132] A. A. Aguilar-Arevalo et al. “Updated MiniBooNE neutrino oscillation results with increased data and new background studies”. In: Phys. Rev. D 103.5 (2021),p. 052002. doi: 10.1103/PhysRevD.103.052002. arXiv: 2006.16883 [hep-ex].
    [133] R. Acciarri et al. “Design and Construction of the MicroBooNE Detector”. In: JINST 12.02 (2017), P02017. doi: 10.1088/1748-0221/12/02/P02017. arXiv:1612.05824 [physics.ins-det].
    [134] P. Abratenko et al. “Search for an Excess of Electron Neutrino Interactions in MicroBooNE Using Multiple Final-State Topologies”. In: Phys. Rev. Lett. 128.24 (2022), p. 241801. doi: 10.1103/PhysRevLett.128.241801. arXiv: 2110.14054 [hep-ex].
    [135] R. L.Workman et al. “Review of Particle Physics”. In: PTEP 2022 (2022), p. 083C01.doi: 10.1093/ptep/ptac097.
    [136] A. A. Aguilar-Arevalo et al. “MiniBooNE and MicroBooNE Combined Fit to a 3+1 Sterile Neutrino Scenario”. In: Phys. Rev. Lett. 129.20 (2022), p. 201801. doi:10.1103/PhysRevLett.129.201801. arXiv: 2201.01724 [hep-ex].
    [137] M. G. Aartsen et al. “eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory”. In: Phys.Rev. Lett. 125.14 (2020), p. 141801. doi: 10.1103/PhysRevLett.125.141801.
    arXiv: 2005.12942 [hep-ex].
    [138] P. Adamson et al. “Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit”. In: Phys. Rev. Lett. 122.9 (2019), p. 091803. doi: 10.1103/PhysRevLett.122.091803. arXiv: 1710.06488 [hep-ex].
    [139] Mona Dentler et al. “Updated Global Analysis of Neutrino Oscillations in thecPresence of eV-Scale Sterile Neutrinos”. In: JHEP 08 (2018), p. 010. doi: 10.1007/JHEP08(2018)010. arXiv: 1803.10661 [hep-ph].
    [140] K. S. Babu et al. “Addressing the short-baseline neutrino anomalies with energydependent mixing parameters”. In: Phys. Rev. D 107.1 (2023), p. 015017. doi:10.1103/PhysRevD.107.015017. arXiv: 2209.00031 [hep-ph].
    [141] Y. Declais et al. “Search for neutrino oscillations at 15-meters, 40-meters, and 95-meters from a nuclear power reactor at Bugey”. In: Nucl. Phys. B 434 (1995),pp. 503–534. doi: 10.1016/0550-3213(94)00513-E.
    [142] M. Apollonio et al. “Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station”. In: Eur. Phys. J. C 27 (2003), pp. 331–374. doi:10.1140/epjc/s2002-01127-9. arXiv: hep-ex/0301017.
    [143] G. Mention et al. “The Reactor Antineutrino Anomaly”. In: Phys. Rev. D 83 (2011), p. 073006. doi: 10 . 1103 / PhysRevD . 83 . 073006. arXiv: 1101 . 2755[hep-ex].
    [144] W. Hampel et al. “Final results of the Cr-51 neutrino source experiments in GALLEX”. In: Phys. Lett. B 420 (1998), pp. 114–126. doi: 10.1016/S0370-2693(97)01562-1.
    [145] F. Kaether et al. “Reanalysis of the GALLEX solar neutrino flux and source experiments”.In: Phys. Lett. B 685 (2010), pp. 47–54. doi: 10.1016/j.physletb. 2010.01.030. arXiv: 1001.2731 [hep-ex].
    [146] J. N. Abdurashitov et al. “Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period”. In: Phys. Rev.C 80 (2009), p. 015807. doi: 10.1103/PhysRevC.80.015807. arXiv: 0901.2200[nucl-ex].
    [147] Mario A. Acero, Carlo Giunti, and Marco Laveder. “Limits on nu(e) and anti-nu(e)cdisappearance from Gallium and reactor experiments”. In: Phys. Rev. D 78 (2008),p. 073009. doi: 10.1103/PhysRevD.78.073009. arXiv: 0711.4222 [hep-ph].
    [148] Carlo Giunti and Marco Laveder. “Statistical Significance of the Gallium Anomaly”.In: Phys. Rev. C 83 (2011), p. 065504. doi: 10.1103/PhysRevC.83.065504. arXiv:1006.3244 [hep-ph].
    [149] Vedran Brdar, Julia Gehrlein, and Joachim Kopp. “Towards resolving the gallium anomaly”. In: JHEP 05 (2023), p. 143. doi: 10.1007/JHEP05(2023)143. arXiv:2303.05528 [hep-ph].
    [150] C. Giunti et al. “Reactor antineutrino anomaly in light of recent flux model refinements”. In: Phys. Lett. B 829 (2022), p. 137054. doi: 10.1016/j.physletb.2022.137054. arXiv: 2110.06820 [hep-ph].
    [151] Jeffrey M. Berryman et al. “Statistical significance of the sterile-neutrino hypothesis in the context of reactor and gallium data”. In: JHEP 02 (2022), p. 055. doi:10.1007/JHEP02(2022)055. arXiv: 2111.12530 [hep-ph].
    [152] Marcela Carena et al. “Neutrinos in Large Extra Dimensions and Short-Baseline νe Appearance”. In: Phys. Rev. D 96.9 (2017), p. 095014. doi: 10.1103/PhysRevD.96.095014. arXiv: 1708.09548 [hep-ph].
    [153] Riccardo Barbieri, Paolo Creminelli, and Alessandro Strumia. “Neutrino oscillations from large extra dimensions”. In: Nucl. Phys. B 585 (2000), pp. 28–44. doi: 10.1016/S0550-3213(00)00348-5. arXiv: hep-ph/0002199.
    [154] T. Aaltonen et al. “High-precision measurement of the W boson mass with the CDF II detector”. In: Science 376.6589 (2022), pp. 170 176. doi: 10 . 1126 /science.abk1781.
    [155] Serguei Chatrchyan et al. “Measurement of the weak mixing angle with the Drell-Yan process in proton-proton collisions at the LHC”. In: Phys. Rev. D 84 (2011),p. 112002. doi: 10.1103/PhysRevD.84.112002. arXiv: 1110.2682 [hep-ex].
    [156] Roel Aaij et al. “Measurement of the forward-backward asymmetry in Z/γ∗ →μ+μ− decays and determination of the effective weak mixing angle”. In: JHEP 11(2015), p. 190. doi: 10.1007/JHEP11(2015)190. arXiv: 1509.07645 [hep-ex].
    [157] Roel Aaij et al. “Measurement of the W boson mass”. In: JHEP 01 (2022), p. 036.doi: 10.1007/JHEP01(2022)036. arXiv: 2109.01113 [hep-ex].
    [158] S. Schael et al. “Electroweak Measurements in Electron-Positron Collisions at W Boson-Pair Energies at LEP”. In: Phys. Rept. 532 (2013), pp. 119–244. doi: 10.1016/j.physrep.2013.07.004. arXiv: 1302.3415 [hep-ex].
    [159] J. de Blas et al. “Impact of the Recent Measurements of the Top-Quark and W Boson Masses on Electroweak Precision Fits”. In: Phys. Rev. Lett. 129.27 (2022),p. 271801. doi: 10.1103/PhysRevLett.129.271801. arXiv: 2204.04204 [hep-ph].
    [160] W. Konetschny and W. Kummer. “Nonconservation of Total Lepton Number with Scalar Bosons”. In: Phys. Lett. B 70 (1977), pp. 433–435. doi: 10.1016/0370-2693(77)90407-5.
    [161] Marcel AlguerÅLo et al. “Unified explanation of the anomalies in semileptonic B decays and the W mass”. In: Phys. Rev. D 106.3 (2022), p. 033005. doi: 10.1103/PhysRevD.106.033005. arXiv: 2201.08170 [hep-ph].
    [162] Andreas Crivellin, Dario MÅNuller, and Francesco Saturnino. “Leptoquarks in oblique corrections and Higgs signal strength: status and prospects”. In: JHEP 11 (2020), p. 094. doi: 10.1007/JHEP11(2020)094. arXiv: 2006.10758 [hep-ph].
    [163] Andreas Crivellin et al. “Large t→cZ as a sign of vectorlike quarks in light of the W mass”. In: Phys. Rev. D 106.3 (2022), p. L031704. doi: 10.1103/PhysRevD. 106.L031704. arXiv: 2204.05962 [hep-ph].
    [164] Alessandro Strumia. “Interpreting electroweak precision data including the Wmass CDF anomaly”. In: JHEP 08 (2022), p. 248. doi: 10.1007/JHEP08(2022)248. arXiv: 2204.04191 [hep-ph].
    [165] “The International Linear Collider Technical Design Report - Volume 2: Physics”. In: (June 2013). Ed. by Howard Baer et al. arXiv: 1306.6352 [hep-ph].
    [166] A. Abada et al. “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2”. In: Eur. Phys. J. ST 228.2 (2019), pp. 261–623. doi:10.1140/epjst/e2019-900045-4.
    [167] A. Abada et al. “FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1”. In: Eur. Phys. J. C 79.6 (2019), p. 474. doi: 10.1140/ epjc/s10052-019-6904-3.
    [168] “Physics and Detectors at CLIC: CLIC Conceptual Design Report”. In: (Feb.2012). Ed. by Lucie Linssen et al. doi: 10.5170CERN-2012-003. arXiv: 1202.5940 [physics.ins-det].
    [169] T. K. Charles et al. “The Compact Linear Collider (CLIC) - 2018 Summary Report”.In: 2/2018 (Dec. 2018). Ed. by P. N. Burrows et al. doi: 10.23731/CYRM-2018-002. arXiv: 1812.06018 [physics.acc-ph].
    [170] Roel Aaij et al. “Tests of lepton universality using B0 → K0S ℓ+ℓ− and B+ →K∗+ℓ+ℓ− decays”. In: Phys. Rev. Lett. 128.19 (2022), p. 191802. doi: 10.1103/PhysRevLett.128.191802. arXiv: 2110.09501 [hep-ex].
    [171] R. Aaij et al. “Test of lepton universality in b → sℓ+ℓ− decays”. In: Phys. Rev.Lett. 131.5 (2023), p. 051803. doi: 10.1103 PhysRevLett.131.051803. arXiv:2212.09152 [hep-ex].
    [172] Kai-Feng Chen, Titus MombÅNacher, and Umberto de Sanctis. “Analysis of → μ+μDecays at the Large Hadron Collider”. In: Symmetry 16.2 (2024), p. 251. doi:10.3390/sym16020251. arXiv: 2402.09901 [hep-ex].
     [173] Armen Tumasyan et al. “Measurement of the B0 S→μ+μ− decay properties and search for the B0→μ+μ− decay in proton-proton collisions at√s = 13 TeV”. In: Phys. Lett. B 842 (2023), p. 137955. doi: 10.1016/j.physletb.2023.137955.arXiv: 2212.10311 [hep-ex].
    [174] R. Aaij et al. “Differential branching fractions and isospin asymmetries of B →K(∗)μ+μ− decays”. In: JHEP 06 (2014), p. 133. doi: 10.1007/JHEP06(2014)133. arXiv: 1403.8044 [hep-ex].
    [175] W. G. Parrott, C. Bouchard, and C. T. H. Davies. “Standard Model predictions for B→Kℓ+ℓ-, B→Kℓ1-ℓ2+ and B→Kνν¯ using form factors from Nf=2+1+1 lattice QCD”. In: Phys. Rev. D 107.1 (2023). [Erratum: Phys.Rev.D 107, 119903 (2023)], p. 014511. doi: 10.1103/PhysRevD.107.014511. arXiv: 2207.13371 [hep-ph].
    [176] Roel Aaij et al. “Branching Fraction Measurements of the Rare B0 s → ϕμ+μ− and B0 s → f′2 (1525)μ+μ−- Decays”. In: Phys. Rev. Lett. 127.15 (2021), p. 151801. doi:10.1103/PhysRevLett.127.151801. arXiv: 2105.14007 [hep-ex].
    [177] Nico Gubernari et al. “Improved theory predictions and global analysis of exclusive b → sμ+μ− processes”. In: JHEP 09 (2022), p. 133. doi: 10.1007/JHEP09(2022) 133. arXiv: 2206.03797 [hep-ph].
    [178] Gino Isidori, Zachary Polonsky, and Arianna Tinari. “Semi-inclusive b→sℓ¯ℓ transitionsat high q2”. In: Phys. Rev. D 108.9 (2023), p. 093008. doi: 10 .1103 /PhysRevD.108.093008. arXiv: 2305.03076 [hep-ph].
    [179] Sebastien Descotes-Genon et al. “Implications from clean observables for the binned analysis of B− > K ∗ μ+μ− at large recoil”. In: JHEP 01 (2013), p. 048. doi:10.1007/JHEP01(2013)048. arXiv: 1207.2753 [hep-ph].
    [180] Roel Aaij et al. “Measurement of CP-Averaged Observables in the B0 → K∗0μ+μ−Decay”. In: Phys. Rev. Lett. 125.1 (2020), p. 011802. doi: 10.1103/PhysRevLett. 125.011802. arXiv: 2003.04831 [hep-ex].
    [181] Andrzej J. Buras. “Standard Model predictions for rare K and B decays withoutnew physics infection”. In: Eur. Phys. J. C 83.1 (2023), p. 66. doi: 10.1140/epjc/s10052-023-11222-6. arXiv: 2209.03968 [hep-ph].
    [182] Marco Ciuchini et al. “Constraints on lepton universality violation from rare B decays”. In: Phys. Rev. D 107.5 (2023), p. 055036. doi: 10.1103/PhysRevD.107.055036. arXiv: 2212.10516 [hep-ph].
    [183] Marcel AlguerÅLo et al. “To (b)e or not to (b)e: no electrons at LHCb”. In: Eur.Phys. J. C 83.7 (2023), p. 648. doi: 10.1140/epjc/s10052-023-11824-0. arXiv:2304.07330 [hep-ph].
    [184] “Recent semileptonic results from Belle II”. In: (2023). doi: https://indico.cern.ch/event/1204084/contributions/5298272/.
    [185] Andrzej J. Buras and Jennifer Girrbach. “Left-handed Z′ and Z FCNC quark couplings facing new b → sμ+μ− data”. In: JHEP 12 (2013), p. 009. doi: 10.1007/JHEP12(2013)009. arXiv: 1309.2466 [hep-ph].
    [186] Rhorry Gauld, Florian Goertz, and Ulrich Haisch. “On minimal Z′ explanations of the B → K∗μ+μ− anomaly”. In: Phys. Rev. D 89 (2014), p. 015005. doi:10.1103/PhysRevD.89.015005. arXiv: 1308.1959 [hep-ph].
    [187] Luca Di Luzio, Matthew Kirk, and Alexander Lenz. “Updated Bs-mixing constraints on new physics models for b → sℓ+ℓ− anomalies”. In: Phys. Rev. D 97.9 (2018), p. 095035. doi: 10 . 1103 / PhysRevD . 97 . 095035. arXiv: 1712 . 06572[hep-ph].
    [188] the SLD Electroweak. “A Combination of preliminary electroweak measurements and constraints on the standard model”. In: (Dec. 2003). arXiv: hep-ex/0312023.
    [189] Roel Aaij et al. “First observation of the rare B+ → D+K+π− decay”. In: Phys. Rev. D 93.5 (2016). [Erratum: Phys.Rev.D 93, 119902 (2016)], p. 051101. doi:10.1103/PhysRevD.93.051101. arXiv: 1512.02494 [hep-ex].
    [190] Andreas Crivellin, Giancarlo D’Ambrosio, and Julian Heeck. “Addressing the LHC flavor anomalies with horizontal gauge symmetries”. In: Phys. Rev. D 91.7 (2015),p. 075006. doi: 10.1103/PhysRevD.91.075006. arXiv: 1503.03477 [hep-ph].
    [191] Andreas Crivellin et al. “Lepton-flavour violating B decays in generic Z′ models”.In: Phys. Rev. D 92.5 (2015), p. 054013. doi: 10.1103/PhysRevD.92.054013.arXiv: 1504.07928 [hep-ph].
    [192] Christoph Bobeth et al. “On new physics in ΔΓd”. In: JHEP 06 (2014), p. 040.doi: 10.1007/JHEP06(2014)040. arXiv: 1404.2531 [hep-ph].
    [193] Andreas Crivellin, Dario MÅNuller, and Francesco Saturnino. “Flavor Phenomenology of the Leptoquark Singlet-Triplet Model”. In: JHEP 06 (2020), p. 020. doi: 10.1007/JHEP06(2020)020. arXiv: 1912.04224 [hep-ph].
    [194] Andreas Crivellin, Benjamin Fuks, and Luc Schnell. “Explaining the hints for lepton flavour universality violation with three S2 leptoquark generations”. In: JHEP 06 (2022), p. 169. doi: 10.1007/JHEP06(2022)169. arXiv: 2203.10111 [hep-ph].
    [195] Andreas Crivellin et al. “Importance of Loop Effects in Explaining the Accumulated Evidence for New Physics in B Decays with a Vector Leptoquark”. In: Phys.Rev. Lett. 122.1 (2019), p. 011805. doi: 10 . 1103 / PhysRevLett . 122 . 011805.arXiv: 1807.02068 [hep-ph].
    [196] Andreas Crivellin, Dario MÅNuller, and Christoph Wiegand. “b → sℓ+ℓ− transitions in two-Higgs-doublet models”. In: JHEP 06 (2019), p. 119. doi: 10.1007/ JHEP06(2019)119. arXiv: 1903.10440 [hep-ph].
    [197] Syuhei Iguro. “Conclusive probe of the charged Higgs solution of P5’ and RD(*) discrepancies”. In: Phys. Rev. D 107.9 (2023), p. 095004. doi: 10.1103/PhysRevD.107.095004. arXiv: 2302.08935 [hep-ph].
    [198] Andreas Crivellin and Matthew Kirk. “Diquark explanation of b→sℓ+ℓ-”. In: Phys.Rev. D 108.11 (2023), p. L111701. doi: 10.1103/PhysRevD.108.L111701. arXiv:2309.07205 [hep-ph].
    [199] Nico Gubernari et al. “Dispersive analysis of B → K(∗) and Bs→ ϕ form factors”.In: JHEP 12 (2023), p. 153. doi: 10.1007/JHEP12(2023)153. arXiv: 2305.06301[hep-ph].
    [200] H. Georgi and S. L. Glashow. “Unity of All Elementary Particle Forces”. In: Phys.Rev. Lett. 32 (1974), pp. 438–441. doi: 10.1103/PhysRevLett.32.438.
    [201] J. Charles et al. “CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories”. In: Eur. Phys. J. C 41.1 (2005), pp. 1–131. doi:10.1140/epjc/s2005-02169-1. arXiv: hep-ph/0406184.
    [202] Marcella Bona et al. “The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model”. In: JHEP 07 (2005), p. 028. doi: 10.1088/1126-6708/2005/07/028. arXiv: hep-ph/0501199.
    [203] R. Barbier et al. “R-parity violating supersymmetry”. In: Phys. Rept. 420 (2005),pp. 1–202. doi: 10.1016/j.physrep.2005.08.006. arXiv: hep-ph/0406039.
    [204] Bhubanjyoti Bhattacharya et al. “Simultaneous Explanation of the RK and R(D(∗)) Puzzles”. In: Phys. Lett. B 742 (2015), pp. 370–374. doi: 10.1016/j.physletb.2015.02.011. arXiv: 1412.7164 [hep-ph].
    [205] Svjetlana Fajfer et al. “Implications of Lepton Flavor Universality Violations in B Decays”. In: Phys. Rev. Lett. 109 (2012), p. 161801. doi: 10.1103/PhysRevLett.109.161801. arXiv: 1206.1872 [hep-ph].
    [206] Yasuhito Sakaki et al. “Testing leptoquark models in .B → D(∗)τ .ν”. In: Phys. Rev. D 88.9 (2013), p. 094012. doi: 10.1103 PhysRevD.88.094012. arXiv: 1309.0301 [hep-ph].
    [207] Svjetlana Fajfer and Nejc Koˇsnik. “Vector leptoquark resolution of RK and RD(∗) puzzles”. In: Phys. Lett. B 755 (2016), pp. 270–274. doi: 10.1016/j.physletb.2016.02.018. arXiv: 1511.06024 [hep-ph].
    [208] Syuhei Iguro. “Revival of H- interpretation of RD(*) anomaly and closing low masswindow”. In: Phys. Rev. D 105.9 (2022), p. 095011. doi: 10.1103/PhysRevD.105.095011. arXiv: 2201.06565 [hep-ph].
    [209] Monika Blanke, Syuhei Iguro, and Hantian Zhang. “Towards ruling out the charged Higgs interpretation of the RD(∗) anomaly”. In: JHEP 06 (2022), p. 043. doi:10.1007/JHEP06(2022)043. arXiv: 2202.10468 [hep-ph].
    [210] Admir Greljo, Gino Isidori, and David Marzocca. “On the breaking of Lepton Flavor Universality in B decays”. In: JHEP 07 (2015), p. 142. doi: 10.1007/JHEP07(2015)142. arXiv: 1506.01705 [hep-ph].
    [211] Lorenzo Calibbi, Andreas Crivellin, and Toshihiko Ota. “Effective Field Theory Approach to b → sℓℓ(′), B → K(∗)νν and B → D(∗)τν with Third Generation Couplings”.In: Phys. Rev. Lett. 115 (2015), p. 181801. doi: 10.1103/PhysRevLett.
    115.181801. arXiv: 1506.02661 [hep-ph].
    [212] Luca Di Luzio, Admir Greljo, and Marco Nardecchia. “Gauge leptoquark as the origin of B-physics anomalies”. In: Phys. Rev. D 96.11 (2017), p. 115011. doi:10.1103/PhysRevD.96.115011. arXiv: 1708.08450 [hep-ph].
    [213] Lorenzo Calibbi, Andreas Crivellin, and Tianjun Li. “Model of vector leptoquarks in view of the B-physics anomalies”. In: Phys. Rev. D 98.11 (2018), p. 115002. doi: 10.1103/PhysRevD.98.115002. arXiv: 1709.00692 [hep-ph].
    [214] Marzia Bordone et al. “A three-site gauge model for flavor hierarchies and flavor anomalies”. In: Phys. Lett. B 779 (2018), pp. 317–323. doi: 10.1016/j.physletb. 2018.02.011. arXiv: 1712.01368 [hep-ph].
    [215] Monika Blanke and Andreas Crivellin. “B Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background”. In: Phys. Rev. Lett. 121.1 (2018), p. 011801. doi: 10.1103/PhysRevLett.121.011801. arXiv: 1801.07256 [hep-ph].
    [216] Stephen F. King. “Twin Pati-Salam theory of flavour with a TeV scale vector leptoquark”. In: JHEP 11 (2021), p. 161. doi: 10.1007/JHEP11(2021)161. arXiv:2106.03876 [hep-ph].
    [217] Valerio Gherardi, David Marzocca, and Elena Venturini. “Low-energy phenomenology of scalar leptoquarks at one-loop accuracy”. In: JHEP 01 (2021), p. 138. doi:10.1007/JHEP01(2021)138. arXiv: 2008.09548 [hep-ph].
    [218] Janus Capellan Aban, Chuan-Ren Chen, and Chrisna Setyo Nugroho. “Effects of Kaluza-Klein neutrinos on RD and RD∗”. In: Phys. Lett. B 848 (2024), p. 138304. doi: 10.1016/j.physletb.2023.138304. arXiv: 2305.10305 [hep-ph].
    [219] W. Altmannshofer et al. “The Belle II Physics Book”. In: PTEP 2019.12 (2019). Ed. by E. Kou and P. Urquijo. [Erratum: PTEP 2020, 029201 (2020)], p. 123C01. doi: 10.1093/ptep/ptz106. arXiv: 1808.10567 [hep-ex].
    [220] Robert Bainbridge. “Recording and reconstructing 10 billion unbiased b hadron decays in CMS”. In: EPJ Web Conf. 245 (2020). Ed. by C. Doglioni et al., p. 01025. doi: 10.1051/epjconf/202024501025.
    [221] S. Dichiara et al. In: GCN Circ. No. 32632 (2022).
    [222] Th. Kaluza. “Zum UnitÅNatsproblem der Physik”. In: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1921 (1921), pp. 966–972. doi: 10.1142/S0218271818700017. arXiv: 1803.08616 [physics.hist-ph].
    [223] Oskar Klein. “Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English)”. In: Z. Phys. 37 (1926). Ed. by J. C. Taylor, pp. 895–906.doi: 10.1007/BF01397481.
    [224] Lochlain O’Raifeartaigh and Norbert Straumann. “Early history of gauge theories and Kaluza-Klein theories”. In: (Oct. 1998). arXiv: hep-ph/9810524.
    [225] Csaba Csaki. “TASI lectures on extra dimensions and branes”. In: Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2002): Particle Physics and Cosmology: The Quest for Physics Beyond the Standard Model(s).Apr. 2004, pp. 605–698. arXiv: hep-ph/0404096.
    [226] Sreerup Raychaudhuri and K. Sridhar. Particle Physics of Brane Worlds and Extra Dimensions. Cambridge Monographs on Mathematical Physics. Cambridge University Press, May 2016. isbn: 978-0-521-76856-6, 978-1-316-57283-2. doi: 10 .1017/CBO9781139045650.
    [227] Csaba Csaki, Jay Hubisz, and Patrick Meade. “TASI lectures on electroweak symmetry breaking from extra dimensions”. In: Theoretical Advanced Study Institute in Elementary Particle Physics: Physics in D ≧ 4. Oct. 2005, pp. 703–776. arXiv: hep-ph/0510275.
    [228] Nima Arkani-Hamed et al. “Neutrino masses from large extra dimensions”. In: Phys. Rev. D 65 (2001), p. 024032. doi: 10.1103/PhysRevD.65.024032. arXiv:hep-ph/9811448.
    [229] Ara Ioannisian and Apostolos Pilaftsis. “Cumulative nondecoupling effects of Kaluza-Klein neutrinos in electroweak processes”. In: Phys. Rev. D 62 (2000), p. 066001. doi: 10.1103/PhysRevD.62.066001. arXiv: hep-ph/9907522.
    [230] Keith R. Dienes, Emilian Dudas, and Tony Gherghetta. “Neutrino oscillations without neutrino masses or heavy mass scales: A Higher dimensional seesaw mechanism”. In: Nucl. Phys. B 557 (1999), p. 25. doi: 10.1016/S0550-3213(99)00377-6. arXiv: hep-ph/9811428.
    [231] G. R. Dvali and Alexei Yu. Smirnov. “Probing large extra dimensions with neutrinos”. In: Nucl. Phys. B 563 (1999), pp. 63–81. doi: 10.1016/S0550-3213(99) 00574-X. arXiv: hep-ph/9904211.
    [232] Apostolos Pilaftsis. “Leptogenesis in theories with large extra dimensions”. In: Phys. Rev. D 60 (1999), p. 105023. doi: 10.1103/PhysRevD.60.105023. arXiv:hep-ph/9906265.
    [233] J. Schechter and J. W. F. Valle. “Neutrino Masses in SU(2) x U(1) Theories”. In: Phys. Rev. D 22 (1980), p. 2227. doi: 10.1103/PhysRevD.22.2227.
    [234] Paul Langacker and David London. “Mixing Between Ordinary and Exotic Fermions”.In: Phys. Rev. D 38 (1988), p. 886. doi: 10.1103/PhysRevD.38.886.
    [235] Thomas Appelquist and J. Carazzone. “Infrared Singularities and Massive Fields”.In: Phys. Rev. D 11 (1975), p. 2856. doi: 10.1103/PhysRevD.11.2856.
    [236] Pouya Asadi and David Shih. “Maximizing the Impact of New Physics in b → cτν Anomalies”. In: Phys. Rev. D 100.11 (2019), p. 115013. doi: 10.1103/PhysRevD. 100.115013. arXiv: 1905.03311 [hep-ph].
    [237] A. M. Baldini et al. “Search for the lepton flavour violating decay μ+ → e+γ with the full dataset of the MEG experiment”. In: Eur. Phys. J. C 76.8 (2016), p. 434. doi: 10.1140/epjc/s10052-016-4271-x. arXiv: 1605.05081 [hep-ex].
    [238] R. N. Mohapatra and Abdel Perez-Lorenzana. “Three flavor neutrino oscillations in models with large extra dimensions”. In: Nucl. Phys. B 593 (2001), pp. 451–470. doi: 10.1016/S0550-3213(00)00634-9. arXiv: hep-ph/0006278.
    [239] https://indico.cern.ch/event/1231797/. In: (2023).
    [240] Florian U. Bernlochner et al. “Semitauonic b-hadron decays: A lepton flavor universality laboratory”. In: Rev. Mod. Phys. 94.1 (2022), p. 015003. doi: 10.1103/RevModPhys.94.015003. arXiv: 2101.08326 [hep-ex].
    [241] Syuhei Iguro and Ryoutaro Watanabe. “Bayesian fit analysis to full distribution data of B → D(∗)ℓν : |Vcb| determination and new physics constraints”. In:JHEP 08.08 (2020), p. 006. doi: 10.1007/JHEP08(2020)006. arXiv: 2004.10208
    [hep-ph].
    [242] Marzia Bordone, Martin Jung, and Danny van Dyk. “Theory determination of B→ D(∗)ℓ−.ν form factors at O(1/m2c)”. In: Eur. Phys. J. C 80.2 (2020), p. 74.doi: 10.1140/epjc/s10052-020-7616-4. arXiv: 1908.09398 [hep-ph].
    [243] Marzia Bordone et al. “Heavy-Quark expansion for .Bs → D(∗) s form factors and unitarity bounds beyond the SU(3)F limit”. In: Eur. Phys. J. C 80.4 (2020),p. 347. doi: 10.1140/epjc/s10052-020-7850-9. arXiv: 1912.09335 [hep-ph].
    [244] Jonathan Granot et al. “Gamma-Ray Bursts as Sources of Strong Magnetic Fields”. In: Space Sci. Rev. 191.1-4 (2015), pp. 471–518. doi: 10.1007/s11214-015-0191-6. arXiv: 1507.08671 [astro-ph.HE].
    [245] A. MacFadyen and S. E. Woosley. “Collapsars: Gamma-ray bursts and explosions in ’failed supernovae’”. In: Astrophys. J. 524 (1999), p. 262. doi: 10.1086/307790.arXiv: astro-ph/9810274.
    [246] Georg Raffelt and Leo Stodolsky. “Mixing of the Photon with Low Mass Particles”. In: Phys. Rev. D 37 (1988), p. 1237. doi: 10.1103/PhysRevD.37.1237.
    [247] L. Dirson and D. Horns. In: Astron. Astrophys. 671.A67 (2023).
    [248] T. Aoyama et al. “The anomalous magnetic moment of the muon in the Standard Model”. In: Phys. Rept. 887 (2020), pp. 1–166. doi: 10.1016/j.physrep.2020. 07.006. arXiv: 2006.04822 [hep-ph].

    下載圖示
    QR CODE