研究生: |
陳奕涵 I-Han Chen |
---|---|
論文名稱: |
影像式單攝影機之機器人動態避障路徑系統 A Dynamic Obstacle-Avoidance Path Planning Using A Single Camera for Mobile Robots |
指導教授: |
王偉彥
Wang, Wei-Yen |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 障礙物檢測 、影像量測 、PLDM |
英文關鍵詞: | obstacle detecting, image measuring, PLDM |
論文種類: | 學術論文 |
相關次數: | 點閱:227 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種影像辨識的方式,應用於自走車的障礙物偵測與其路徑規劃。首先透過二值化、中值濾波、形態學處理、canny運算、連通元件等影像處理方法,找出障礙物的位置,再利用所提出的平行線距離量測法,偵測影像中障礙物的實際座標。於實驗環境中平行線距離量測系統的架設,只需使用單一網路攝影機及四個參考目標點。因此實驗環境的架設建構相對的較簡單,而且架設成本相對的便宜。最後,將影像辨識方法與平行線距離量測結合,完成自走車的避障路徑規劃系統。在路徑規劃的方面,分為靜態的路徑規劃以及動態的路徑規劃,靜態的路徑規劃是將網路攝影機架設在天花板上,並將規劃的路徑即時的回傳於二維地圖上,做為自走車移動的依據;而動態的路徑規劃則是將網路攝影機架設在機器人上,使機器人在遇到障礙物時,能夠即時的進行避障路徑的規劃,以利於機器人的行走,最後以實驗驗證此方法的可行性。
This thesis proposes a way to identify the image which is applied to the obstacle-detecting and path-planning of a wheeled mobile robot. First of all, we use some image processing methods including medium filter, morphologic processing, Canny edge detector, and connected component labeling to find the locations of obstacles. Then we use a parallel lines distance measuring method to detect the actual coordinates of the obstacles in the image. To set up the parallel lines distance measuring system in the experiment, we just need a single web camera and four juxtaposed points. Thus the setting of this experiment is relatively easy and the cost is lower. Finally, we combine the image identifying method with parallel lines distance measuring method to complete the path-planning of a wheeled mobile robot system. To design the path-planning, we have two methods including static and dynamic states. The static path-planning method is to set up a web camera on the ceiling and instantly transfer the images to a two-dimensional map as a basis of the wheeled mobile robot’s movements. The dynamic path-planning method is to set up the web camera on the wheeled mobile robot and make it plan the path which can avoid the obstacles simultaneously. By the experiments, the wheeled mobile robot can go smoothly and we can illustrate the feasibility of the proposed method.
[1] G. Yasuda and H. Takai, “Sensor-based path planning and intelligent steering control of nonholonomic mobile robots,” The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001, pp. 317-322.
[2] A. Fujimori and S. Tani, “A navigation of mobile robots with collision avoidance for moving obstacles,” IEEE International Conference on Industrial Technology, 2002, pp. 1-6.
[3] Y. Wang and S. Fang, “Image-based exploration obstacle avoidance for mobile robot,” Control and Decision Conference, 2009, pp. 3019-3023.
[4] R. C. Luo, K. L. Su, and K. H. Tsai, “Intelligent security robot fire detection system using adaptive sensory fusion method,” IEEE 28th Annual Conference of the Industrial Electronics Society, Nov. 2002, pp. 2663-2668.
[5] R. C. Luo, K. L. Su, and K. C. Lin, “Overview of The Intelligent Security Robot – Chung Cheng I,” IEEE Workshop on Advance Robotics and its Social Impacts, June 2005, pp. 220-225.
[6] E. M. Petriu, “Automated guided vehicle with absolute encoded guide-path,” IEEE Transactions on Robotics and Automation, vol. 7, no.4, pp. 562-565, Aug. 1991.
[7] M. Rous, H. Lupschen, and K. F. Kraiss, “Vision-Based Indoor. Scene Analysis for Natural Landmark Detection,” IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005, pp. 4642-4647.
[8] H. Y. Cheng, B. S. Jeng, P. T Tseng, and K.-C. Fan, “Lane Detection With Moving Vehicles in the Traffic Scenes,” IEEE Transactions on Intelligent Transport System, vol. 7, no. 4, pp. 571-582, Dec. 2006.
[9] S. K. Park, J. H. Jung, and K. W. Lee, “Mobile robot navigation by circular path planning algorithm using camera and ultrasonic sensor,” IEEE International Symposium on Industrial Electronics, July 2009, pp. 1749-1754.
[10] A. Caarullo and M. Parvis, “An ultrasonic sensor for distance measurement in automotive applications,” IEEE Sensors Journal, vol. 1, no. 3, pp. 143-147, Oct. 2001.
[11] K. Kaliyaperumal, S. Lakshmanan, and K. Kluge, “An algorithm for detecting roads and obstacles in radar images,” IEEE Trans. on Vehicular Technology, vol. 50, pp. 170-182, Jan. 2001.
[12] H. T. shin, “Vehicles Crash proof Laser Radar,” M.S. thesis, Opt. Sci. Center, National Central University, Chung Li City, Taiwan, R.O.C., 2000.
[13] K. Osugi, K. Miyauchi, N. Furui, and H. Miyakoshi, “Development of the scanning laser radar for ACC system,” JSAE review, vol. 20, no. 4, Oct. 1999, pp. 549-554.
[14] 陳政傑,“自走式機器人之雷射定位與路徑規劃”, 國立雲林科技大學 , 碩士論文 , 95年7月
[15] 施瑋翔,“視覺伺服應用於自走車追蹤避障之實現”, 國立成功大學 , 碩士論文 , 97年7月
[16] 李欽舜,“輪型行動機器人之運動控制與避障路徑規劃”, 國立中央大學 , 碩士論文 , 93年6月
[17] S. Nedevschi, R. Danescu, D Frentiu, T. Marita, F. Oniga, C. Pocol, R. Schmidt, and T. Graf, “High accuracy stereo vision system for far distance obstacle detection,” IEEE Intelligent Vehicles Symposium, June. 2004, pp. 161-166.
[18] T. Suzuki and T. Kanada, “Measurement of vehicle motion and orientation using optical flow,” IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, Tokyo, Japan, Oct. 1999, pp. 25-30.
[19] A. Ohya, A. Kosaka, and A. Kak, “Vision-Based Navigation by a Mobile Robot with Obstacle Avoidance Using Single-Camera Vision and Ultrasonic Sensing,” IEEE Transactions on Robotics and Automation, vol. 14, pp. 969-978, Dec. 1998.
[20] Y. Wang, S. Fang, Y. Cao, H. Sun, “Image-based exploration obstacle avoidance for mobile robot,” Chinese Control and Decision Conference, Guilin, June 2009, pp. 3019-3023.
[21] D. Hoiem, A. A. Efros, and M. Hebert, “Recovering surface layout from an image,” International Journal of Computer Vision, vol. 75, no. 1, pp. 151-172, 2007.
[22] L. Y. Guo and Y. Q. Xia, “Color image stereo correspondence algorithm for obstacle detection,” Chinese Conference on Pattern Recognition, Nanjing, Nov. 2009, pp. 1-4.
[23] 謝易錚,“以立體視覺實作盲人輔具系統”, 國立中央大學 , 碩士論文 , 95年7月
[24] H. Noborio and Y. Nishino, “Image-based path-planning algorithm on the ioint space,” IEEE International Conference on Robotics and Automation, 2001, pp. 1180-1187.
[25] J. C. Latombe, “Robot Motion Planning,” Kluwer. Academic Publishers, 1991.
[26] D. Ferguson and A. Stentz, “The delayed D* algorithm for efficient path replanning,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, pp. 2045-2050.
[27] 余志成,“應用環場影像器於自主式越障車之定位與路徑規劃系統", 國立高雄第一科技大學, 碩士論文, 93年
[28] Rafael C. Gonzalez and Richard E. Woods,數位影像處理,繆紹綱,台灣培生教育出版股份有限公司,2005年12月
[29] M. Miwa, M. Ishii, and M. Sato, “Screen projection camera for ranging far away objects,” Pattern Recognition, 2000. Proceedings.15th International Conference, Spain, 2000, pp. 4744-4747.
[30] T. Egami, S. Oe, K. Terada, and T. Kashiwagi, “Three dimensional measurement using color image and movable CCD system,” The 27th Annual Conference of the IEEE Industrial Electronic Society, 2001, pp. 1932-1936.
[31] A. Cano-Garcia and P. R. Fernaindez, “Simplified Method for Radiometric Calibration of an Array Camera,” Proceedings of the IEEE International Symposium on Intelligent Signal Processing, pp. 1-5, Oct. 2007.
[32] R. cucchiara, M. Piccardi, and P. Mello, “Image analysis and rule-based reasoning for a traffic monitoring system,” IEEE Transportation Intelligent., Transp. Syst, vol. 1, no. 4, pp. 119-130, March 2000.
[33] H. Yan, “Image analysis for digital media applications,” IEEE Comput. Graph. Appl, vol. 21, no.1 , pp. 18-26, Jan. 2011.
[34] B. G. Mertzios and K. Tsiriklias, “Applications of coordinate logic filters in image analysis and pattern recognition,” Proceedings of 2nd International Symposium on Image and Signal Processing and Analysis, 2001, pp. 125-130.
[35] C. C. Hsu, M. C. Lu, W. Y. Wang, and Y. Y. Lu, “Three dimensional measurement of distant objects based on laser-projected CCD images,” IET Science, Measurement & Technology, vol. 3, no. 3, pp. 197-207, May 2009.
[36] B. G. Mertzios and I. S. Tsirikolias, “Applications of coordinate logic filters in image analysis and pattern recognition,” Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, Pula, pp. 125-130, Jun. 2001.
[37] M. C. Lu, “Image-based height measuring system for Liquid or particles in tanks,” ROC patent of invention, no. 201536, 2004.
[38] C. C. Chen, M. C. Lu, W. Y. Wang, and C.-T. Chuang, “The Mere diverter and its application,” ROC patent of invention, no. M279875, 2005.
[39] M. C. Lu, W. Y. Wang, C. T. Chuang, C.-P. Tsai, and Y.-Y. Lu, “Height Measuring System via Slant Photography,” Proceedings of the 4th International Conference on Autonomous Robots and Agents, Wellington, New Zealand, pp.302-307, Feb. 10-12, 2009.
[40] W. Y. Wang, M. C. Lu, C. T. Chuang, and J.-C. Cheng, “Image-Based Height Measuring System,” The 7th WSEAS International Conference on Signal Processing Computational Geometry & Artificial Vision (ISCGAV'07), Vouliagmeni Beach, Athens, Greece, Aug. 24-26, 2007, pp.147-152.
[41] M. C. Lu, W. Y. Wang, and H. H. Lan, “Image-based height measuring system for Liquid or particles in tanks,” Proc. IEEE Int. Conf. Networking, Sensing and Control, vol. 1, 2004, pp. 24-29.
[42] C. C. Chen, M. C. Lu, C. T. Chuang, and C.-P. Tsai, “Vision-Based Distance and Area Measurement System,” WSEAS Transactions on Signal Processing, vol. 4, Issue 2, pp. 36-43, Feb. 2008.
[43] T. W. Lai, I. H. Li, C. P. Tsai, and W.-Y. Wang, “A single CCD measuring method for three-dimensional rectangular objects,” International Conference on System Science and Engineering, pp. 223-228, 2012.