簡易檢索 / 詳目顯示

研究生: 王乃緯
Wang, Nai-Wei
論文名稱: 氧化鈥鋅/氧化亞鈷多層膜結構的螢光及磁光特性
Luminecent and magneto-optical properties of zinc holmium oxide/cobalt monoxide multilayer structures
指導教授: 駱芳鈺
Lo, Fang-Yuh
口試委員: 林文欽 洪振湧
口試日期: 2021/07/27
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 64
中文關鍵詞: 脈衝雷射蒸鍍法氧化鈥鋅氧化鈷多層膜磁光
英文關鍵詞: pulsed laser deposition, holmium-doped zinc oxide, cobalt monoxide, multilayer film, magneto-optical Faraday effect
DOI URL: http://doi.org/10.6345/NTNU202101118
論文種類: 學術論文
相關次數: 點閱:131下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用脈衝雷射蒸鍍法製備在c-sapphire上三種不同鍍膜環境的單層ZnO摻雜Ho薄膜及三種不同類型夾雜著CoO層的多層膜,其中Ho摻雜比例分為0、1及3%,並研究其結構特性、光學特性及磁光特性。
      結構特性方面,X光繞射和拉曼散射光譜觀察到纖鋅礦結構ZnO和岩鹽結構CoO的特徵峰,代表樣品為多層單晶薄膜。其中多層膜結構中較下層的薄膜會因熱退火效應而晶體結構較佳。拉曼散射光譜則從ZHO薄膜觀察到Ho3+ 4f軌域躍遷譜線。
      光學特性方面,在所有樣品中皆有ZnO的近能隙發光,在樣品中發現由氧空缺、鋅空缺、鋅間隙或其複合缺陷造成的缺陷發光,但無CoO或Ho3+的螢光,亦無ZnO/CoO/ZnO量子井的譜線。溫度從300 K變化到20 K,因晶格收縮使發光峰值藍移,且因熱擾動減少使ZnO近能隙發光強度相對於缺陷發光上升。
      磁光特性方面,由MOFE及MOKE得知,在室溫下量測所有樣品的磁滯曲線皆為順磁性,且磁矩無達到飽和。法拉第磁光效應較強的波長為400到540 nm。薄膜的等效Verdet常數值隨波長增長而減小。除了ZHO 3%的三層膜結構外,多層膜等效Verdet常數的估計值與測量值相近,而ZHO 3%三層膜測量值較低的原因是其ZHO層的法拉第磁光效應比單層薄膜弱。

    In this thesis, single-layer Ho -doped ZnO (ZHO) films with three different deposition conditions and three different types of ZHO/CoO multilayer films on c-sapphire were prepared by pulsed laser deposition. The doping percentage of Ho doping was 0, 1, and 3%, and their structural, optical, and magneto-optical properties were investigated.
      For the structural properties, the characteristic peaks of ZnO and CoO were observed in x-ray diffraction and Raman-scattering spectra, which represent that the multilayer films are single-crystalline without interdiffusion. The lower layer of the multilayer film structure had a better crystal structure due to the thermal annealing effect. In the Raman-scattering spectra, the Ho3+4f intra-subband emission lines were observed from the ZHO films.
      In photoluminescence (PL) spectra, the near-energy edge (NBE) emissions of ZnO was observed from all samples, and the defect emissions due to oxygen vacancies, zinc vacancies, zinc interstitials, or their combinations, were also identified. However, no emission characteristics of CoO, Ho3+ intra-subband, and ZHO/CoO/ZHO quantum wells were observed. The PL peak was blue-shifted due to the lattice shrinkage when the temperature was changed from 300 K to 20 K. Moreover, the intensity of ZnO NBE emission increases relative to that of defect luminescence due to the reduction of the thermal disturbance.
      For the magneto-optical properties, the MOFE and the MOKE showed only paramagnetic behavior at room temperature without saturation magnetization at the maximum magnetic field. The magneto-optical Faraday effect is stronger at wavelengths between 400 and 540 nm. The value of effective Verdet constant of the films decreases with increasing wavelength. The estimated values of the effective Verdet constant are close to the measured values for the multilayer films except for the ZHO3% trilayer structure, where the measured values are relatively lower due to the smaller contribution from the ZHO layer in the trilayer structure than its single-layer counterpart.

    致謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 第二章 背景知識 6 2.1材料特性 6 2.1.1藍寶石基板(sapphire) 6 2.1.2氧化鋅(zinc oxide) 6 2.1.3鈥 7 2.1.4氧化亞鈷 8 2.2實驗儀器原理介紹 10 2.2.1脈衝雷射沉積法(Pulsed Laser Deposition,PLD) 10 2.2.2表面輪廓儀(Surface Profiler) 11 2.2.3 X光繞射光譜(x-ray diffraction,XRD) 11 2.2.4拉曼光譜(Raman spectroscopy) 13 2.2.5光致螢光光譜(Photoluminescence) 14 2.2.6磁光法拉第效應(Magneto-optical Faraday effect,MOFE) 15 2.2.7磁光柯爾效應(Magneto-optic Kerr effect,MOKE) 17 2.2.8磁性介紹 18 第三章 樣品製備 21 3.1靶材製備 21 3.2鍍膜流程 21 第四章 結果討論與分析 23 4.1鍍膜速率 23 4.2結構性質 24 4.2.1X光繞射光譜分析 24 4.2.2拉曼光譜分析 29 4.3光致熒光光譜 32 4.4磁光性質 39 4.4.1法拉第全光譜測量 39 4.4.2法拉第磁滯曲線 43 4.4.3磁光柯爾效應分析 49 第五章 結論 50 參考資料 52 附錄 56

    M. Johnson and R. H. Silsbee, Interfacial charge spin-coupling: Injection and detection of spin magnetization in metal, Physics Review Letters, 55, 17 (1985).
    M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Physics Review Letters, 61, 2472 (1988).
    駱芳鈺,參雜釓元素的氮化鎵薄膜的磁性質,台灣磁性技術協會,50期,2009。
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, Science 287, 1019 (2000).
    鄒一德,透明氧化鋅之薄膜電晶體技術開發研究,國立陽明交通大學(碩士論文),2005。
    Dae-Kue Hwang, Soon-Hyung Kang, Jae-Hong Lim, Eun-Jeong Yang, Jin-Yong Oh, Jin-Ho Yang, and Seong-Ju Park, p-ZnO/n-GaN heterostructure ZnO light-emitting diodes, Applied Physics Letters 86, 222101 (2005).
    萬仲芸,低溫合成高效能透明p型氧化鎳/n型氧化鋅奈米線異質接面於紫外光偵測器之研究,國立陽明交通大學(碩士論文),2013。
    Charles Kittel, Introduction to Solid State Physics (8th ed.), John Wiley & Sons.
    Ghulam Murtaza Rai, Muhammad Azhar Iqbal, Yongbing Xu, Iain Gordon Will, Wen Zhang, Influence of Rare Earth Ho3+ Doping on Structural, Microstructure and Magnetic Properties of ZnO Bulk and Thin Film Systems, Chinese Journal of Chemical Physics, 24, 353 (2011)
    Shubra Singh , J.N. Divya Deepthi, B. Ramachandran, M.S. Ramachandra Rao, Synthesis and comparative study of Ho and Y doped ZnO nanoparticles, Materials Letters, 65, 2930 (2011).
    林于庭,氧化鈥鋅薄膜的磁光與電性,國立台灣師範大學(碩士論文),2020。
    Chang, P.-C., Mudinepalli, V. R., Liu, S.-Y., Lin, H.-L., Hsu, C.-C., Liao, Y.-T., Obinata, S., Kimura, T., Chern, M.-Y., Lo, F.-Y., & Lin, W.-C., Interfacial exchange coupling-modulated magnetism in the insulating heterostructure of CoOx/yttrium iron garnet. Journal of Alloys and Compounds, 875, 159948 (2021).
    歐陽妙佳,氮化銦鎵/氮化鎵多重量子井奈米柱光學特性之研究,國立陽明交通大學(碩士論文),2004。
    王尊信、洪連輝,雷射二極體,科學online高瞻自然科學教學資源平台(https://highscope.ch.ntu.edu.tw/wordpress/?p=38859),2011。
    Yu-Zi Liu, M.J. Ying, X.L. Du, J.F. Jia, Q.K. Xue, X.D. Han, Z. Zhang, The 30° rotation domains in wurtzite ZnO films, Journal of Crystal Growth, 290, 631 (2006).
    Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, A comprehensive review of ZnO materials and devices, Journal of Applied Physics, 98, 041301 (2005).
    Wikipedia, Holmium(https://en.wikipedia.org/wiki/Holmium).
    Wikipedia, Holmium(III) oxide(https://en.wikipedia.org/wiki/Holmium(III)_oxide).
    P. S. Silinsky and Mohindar S. Seehra, Principal magnetic susceptibilities and uniaxial stress experiments in CoO. Physical Review B, 24: 419 (1981).
    Siti Nurul Falaein Moridon, Khuzaimah Arifin, Amilia Linggawati, Lorna Jeffery Minggu, Mohammad Bin Kassim, Density Functional Theory Study on the Electronic Properties of Doped-Cobalt Oxide (CoO), Jurnal Kejuruteraan, 32, 61 (2020).
    Y. Wang, H.X. Ge, Y.P. Chen, X.Y. Meng, J. Ghanbaja, D. Horwat, J.F. Pierson, Wurtzite CoO: a direct band gap oxide suitable for photovoltaic absorber, Chemical Communications,54, 13949 (2018)
    陳建淼、洪連輝,柯爾磁光效應,科學online高瞻自然科學教學資源平台(https://highscope.ch.ntu.edu.tw/wordpress/?p=1595),2009。
    李聖尉、蔡志申,磁性物質(Ⅰ)–反磁性、順磁性(Magnetic Material–Ⅰ),科學online高瞻自然科學教學資源平台(https://highscope.ch.ntu.edu.tw/wordpress/?p=22512),2011。
    陳建淼、洪連輝,磁性物質,科學online高瞻自然科學教學資源平台(https://highscope.ch.ntu.edu.tw/wordpress/?p=1629),2009。
    S. C. Abrahams and J. L. Bernstein, Relneasurement of the Structure of hexagonal ZnO, Acta Crystallographica, B25, 1233 (1969).
    Liu, J.-F., Yin, S., Wu, H.-P., Zeng, Y.W., Hu, X.R., Wang, Y.W., Lv, G.L., Jiang, J.-Z., Wurtzite-to-rocksalt structural transformation in nanocrystalline CoO, Journal of Physical Chemistry B, 110, 21588 (2006).
    M. Kadlei ́kova ́, J. Breza, M. Vesely ́, Raman spectra of synthetic sapphire, Microelectronics Journal, 32, 955 (2001).
    A. Escobedo-Morales, U. Pal, Effect of In, Sb and Ga doping on the structure and vibrational modes of hydrothermally grown ZnO nanostructures, Current Applied Physics, 11, 525 (2011).
    G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, John Wiley & Sons.
    M. Rashad, M. Rüsing, G.Berth, K. Lischka, and A. Pawlis, CuO and Co3O4 Nanoparticles: Synthesis, Characterizations, and Raman Spectroscopy, Journal of Nanomaterials, 2013, 1 (2013).
    Aleksandra B. Djurisˇic´, and Yu Hang Leung, Optical Properties of ZnO Nanostructures, Small, 2, 944 (2006).
    Sesha Vempati, Joy Mitra, and Paul Dawson, One-step synthesis of ZnO nanosheets: a blue-white fluorophore, Nanoscale Research Letters, 7, 470 (2012).
    Alejandro G. Roca, Igor V. Golosovsky, Elin Winkler, Alberto López-Ortega, Marta Estrader, Roberto D. Zysler, María Dolors Baró, and Josep Nogués, Unravelling the Elusive Antiferromagnetic Order in Wurtzite and Zinc Blende CoO Polymorph Nanoparticles, Small, 14, 1703963 (2018).
    S. Laureti, E. Agostinelli, G. Scavia, G. Varvaro, V. Rossi Albertini,A. Generosi, B. Paci, A. Mezzi, S. Kaciulis, Effect of oxygen partial pressure on PLD cobalt oxide films, Applied Surface Science, 254, 5111 (2008).
    Yang Li, Wenlan Qiu, Fan Qin, Hui Fang, Viktor G. Hadjiev, Dmitri Litvinov, and Jiming Bao, Identification of Cobalt Oxides with Raman Scattering and Fourier Transform Infrared Spectroscopy, The Journal of Physical Chemistry C, 120, 4511 (2016).
    Nasser A. M. Barakat, Myung Seob Khil, Faheem A. Sheikh, and Hak Yong Kim, Synthesis and Optical Properties of Two Cobalt Oxides (CoO and Co3O4) Nanofibers Produced by Electrospinning Process, The Journal of Physical Chemistry C, 112, 12225 (2008).
    R. Drasovean, S. Condurache-Bota, Structural characterization and optical properties of Co3O4 and CoO films, Journal of Optoelectronics and Advanced Materials, 11, 2141 (2009).
    V. I. Sokolov, V. A. Pustovarov, N. B. Gruzdev, P. S. Sokolov, and A. N. Baranov, Low-Temperature Photoluminescence of CoO Excited by Synchrotron Radiation, Optics and Spectroscopy, 116, 790 (2014).
    Takeshi Ogasawara, Improvement in spatial frequency characteristics of magneto-optical Kerr microscopy, Japanese Journal of Applied Physics, 56, 108002 (2017).

    下載圖示
    QR CODE