簡易檢索 / 詳目顯示

研究生: 洪振翔
Hung, Chen-Hsiang
論文名稱: 增進海底電磁儀資料與分析方法並建構西太平洋上部地函電導率構造
Re-visit seafloor magnetotelluric data and image local high-resolution electrical conductivity structure in the western Pacific
指導教授: 林佩瑩
Lin, Pei-Ying
口試委員: 林佩瑩
Lin, Pei-Ying
馬場 聖至
Baba, Kiyoshi
歌田 久司
Utada, Hisashi
陳俊榕
Chen, Chun-Rong
口試日期: 2024/09/24
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 115
中文關鍵詞: 電性構造海底電磁儀菲律賓海板塊軟流圈大地電磁法上部地函電導率構造
英文關鍵詞: Electrical conductivity, Ocean Bottom Electro Magnetometer, Philippine Sea Plate, Lithosphere-Asthenosphere system, Magnetotelluric, MT, Upper mantle
DOI URL: http://doi.org/10.6345/NTNU202401940
論文種類: 學術論文
相關次數: 點閱:197下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地層中各岩體不同的導電率(electrical conductivity)可以反映不同物性,如溫度越高或含水量越多的物質組成(例如:部分熔融、熱液)其導電率就越高,進而可了解地層下方的電性構造。而海域的電性構造可透過佈放在海底的海底電磁觀測儀(Ocean Bottom Electro-Magnetometer,簡稱OBEM),觀測儀器下方與周遭的綜合電磁場訊號,並以大地電磁法(magnetotelluric,簡稱MT)逆推獲得地底下導電率隨深度的變化情形。
    本研究對西太平洋海底電磁場數據進行分析,資料來自27個站點共計46台OBEM,主要目的是增進對西菲律賓海盆(West Philippine Basin,WPB)和四國-帕里西維海盆(Shikoku-Parece Vela Basin,SPVB)底下導電率結構的理解。本研究通過結合Chave and Thomson(2004)提出的standard 和generalized兩種遠程參考法(remote reference method,RR),成功降低了大地電磁響應(MT response)的誤差並提高觀測與預測電場之間的相干性(coherence),其中generalized RR在較短週期內表現出色,得到誤差更小且相干性更高的大地電磁響應。而部分站點觀測紀錄長達三年,更使得大地電磁響應誤差減少約40%,凸顯了在海洋環境中進行長期數據採集的重要性。
    所記錄的電磁響應包含三維地形影響,在利用電磁響應逆推一維地層導電率前須考量三維地形效應進行地形修正,本研究針對每個測站的初次電磁響應逆推其一維地下電性構造做為初始模型,結合三維地形順推計算該測站理論電磁響應與觀測電磁響應比較後重複迭代,最後收斂求得代表一維地下構造導電率。經過考慮地形效應後,我們首次觀察到使用最終一維地下電性構造結合三維地形順推求得的磁場感應向量(induction vectors)與觀測資料之磁場感應向量非常吻合。由於構造逆推過程中並沒有納入磁場感應向量擬合,表明此研究中在電性構造與電磁響應之逆推結果一致。顯示三維地形修正的重要性外,也代表各測站並無明顯二維電性構造的特徵,所求得的一維地下構造導電率可代表各測站下方電性構造進行討論。
    本研究透過分析各測站的最終一維電性構造,發現在WPB的T01、T02和T04站點下方30至125公里深處存在顯著的高導電率異常。我們將電性構造轉換為溫度,並與地函橄欖岩固相線對比,我們發現如果地函含水量介於0至0.02 wt%之間,上述區域會發生部分熔融,此結果與前人地震波速慢異常觀測結果相吻合。根據每測站所推得的熱構造,本研究所有測站在150至300公里深處區間,沒有發現部分熔融的可能性。此外,我們從一維電性構造變化情形估算低導電層(lower conductivity layer,LCL)的厚度,在WPB和SPVB站點下方的LCL厚度相似,約為50至70公里,而在太平洋板塊西緣下方,LCL則明顯更厚,約為210公里。我們注意到WPB 和 SPVB 的 LCL厚度都比1,300°C 等溫線深度淺,而該等溫線通常定義為岩石圈-軟流圈熱邊界層。這種差異的一種可能解釋是部分熔融的增加會改變導電率曲線。隨著岩石圈底部和軟流圈頂部導電率的增加,LCL可能會變得更薄。
    本研究重新分析海底電磁儀資料,經過地形修正得到各測站下方一維電性構造,進一步了解岩石圈與軟流圈的物理特性,推估西太平洋存在部分熔融的區域與深度。

    Characterizing the physical properties of the lithosphere-asthenosphere system (LAS) beneath the oceans, such as seismic velocity and electrical conductivity, is critical for understanding its complex nature. In this thesis, electromagnetic observations from 46 Ocean Bottom Electro-Magnetometers (OBEMs) across 27 sites in the Philippine Sea and the western Pacific Ocean were reanalyzed, some of which offer up to 3 years of recovery data. This expanded on previous one-year data analyses by utilizing all available data and combining both standard and generalized remote reference techniques (Chave & Thomson, 2004) with land geomagnetic stations as reference sites. Our improvements to seafloor magnetotelluric (MT) responses yielded significantly reduced error bars across the entire period band and increased coherence between observed and predicted electric fields. For some available sites, three years of continuous data allow us to further reduce response errors by approximately 40%, highlighting the value of long-term data acquisition.
    This study investigates the influence of three-dimensional (3D) topography on MT responses and subsurface conductivity structure. We conducted 1D conductivity inversions for each site, incorporating the 3D topographic heterogeneity overlying the 1D mantle model. To minimize the root-mean-square misfit between observed and predicted MT responses, we iteratively refined the 1D inversions on topographically corrected responses. After accounting for topographic effects in MT responses, we noticed for the first time that the induction vector calculated using the final 1D model and 3D topography closely matched the induction vector calculated by observed magnetic data. Since we didn’t incorporate the induction vectors in inversion analysis, this suggests that non-1D features of MT and induction vectors are roughly explained by considering topography effect. This underscores the importance of topographic corrections in marine EM studies and the resulting 1D subsurface structure effectively represents the true electrical properties beneath each measurement station.
    Our 1D conductivity models revealed a high conductivity anomaly at depths of 30 to 125 km beneath sites T01, T02, and T04 in the western West Philippine Basin (WPB). By comparing the thermal structure derived from these conductivity profiles with the mantle peridotite solidus, we inferred the need for partial melting at these depths, assuming a water content range of 0 to 0.02 wt. This finding is consistent with previous seismic observations of slow-velocity anomalies. Additionally, our 1D conductivity models allowed us to estimate the thickness of the lower conductivity layer (LCL). The LCL beneath WPB and SPVB is approximately 50 to 70 km thick, while beneath the Pacific Plate, it reaches around 210 km. Interestingly, the LCL thickness in WPB and SPVB is shallower than the 1,300°C isotherm depth, typically associated with the thermal lithosphere-asthenosphere boundary. Increased partial melting in the top of asthenosphere may have altered the conductivity curve, resulting in a thinner LCL.
    Overall, by reanalyzing seafloor electromagnetic data and applying topographic corrections, we derived 1D electrical conductivity profiles beneath each station. This allowed us to gain insights into the physical properties of the LAS and estimate the extent and depth of partial melting in the western Pacific.

    Acknowledgements i 中文摘要 ii Abstract iv Contents vi List of Figures viii List of Tables xii Chapter 1 Introduction 1 1.1. Introduction to magnetotelluric (MT) 1 1.2. Importance of understanding lithosphere and asthenosphere system 1 1.3. Philippine Sea: geomorphology and geological significance 2 1.4. Previous seismic and electromagnetic studies of the upper mantle beneath the Philippine Sea Plate 3 1.5. Revisitation and expansion of electromagnetic (EM) data 4 Chapter 2 Methodology 21 2.1. Magnetotelluric theory 21 2.1.1. Maxwell's equations 21 2.1.2. Basics of electromagnetic induction 22 2.1.3. Effect of skin depth 24 2.1.4. MT response, Z 25 2.2. Remote reference methods (RR) 26 2.2.1. Standard remote reference method (Standard RR) 27 2.2.2. Generalized remote reference method (Generalized RR) 27 2.2.3. Evaluation of differences in MT response calculated by the two RR 28 2.3. 1D inversion 28 2.3.1. 1D average response 28 2.3.2. 1D inversion algorithm 29 2.4. Correction for topography effect 31 2.5. Magnetotelluric phase tensor 32 2.6. Induction vectors 34 Chapter 3 Data and Processing 41 3.1. OBEM data 41 3.2. Land geomagnetic data 42 3.3. EM data processing 43 3.3.1. Data pre-processing 43 3.3.2. Reduce solar quiet variation and tidal effect 43 3.4. Obtaining the observed MT response 44 3.5. 1D inverted conductivity model using observed Z 45 3.6. Induction vector data processing 47 Chapter 4 Results of Inverted Electrical Conductivity Models 65 4.1. Topography effect correction and refine the Z 65 4.2. Influence of topography on induction vector analysis 66 4.3. Dimensionality analysis—magnetotelluric phase tensor 66 4.4. 1D inverted electrical conductivity results 67 4.5. High conductivity in the upper mantle of West Philippine Basin 67 4.6. Thickness of lower conductivity layer 68 Chapter 5 Discussions 80 5.1. High conductivity beneath West Philippine Basin 80 5.2. Variation of low conductivity layer thickness in Philippine Sea 81 Chapter 6 Conclusions 93 References 95 Appendix A. Frequency range determination for resolving seafloor electric and magnetic signals in a 1D ocean model 104

    Abdallah, S., Utsugi, M., Aizawa, K., Uyeshima, M., Kanda, W., Koyama, T., & Shiotani, T. (2020). Three-dimensional electrical resistivity structure of the Kuju volcanic group, Central Kyushu, Japan revealed by magnetotelluric survey data. Journal of Volcanology and Geothermal Research, 400. https://doi.org/10.1016/j.jvolgeores.2020.106898
    Allen, J. (1982). Some commonly used magnetic activity indices: Their derivation, meaning and use. In Proceedings of a Workshop on Satellite Drag (pp. 114–134). NOAA Boulder, Colo. Retrieved from https://www.ngdc.noaa.gov/stp/solar/magindices.html
    Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment. John Wiley & Sons. Retrieved from http://aviris.gl.fcen.uba.ar/Bibliografia/Basin_Analysis.pdf
    Anahnah, F., Galindo-Zaldívar, J., Chalouan, A., Pous, J., Ruano, P., Pedrera, A., et al. (2011). Crustal resistivity structure of the southwestern transect of the Rif Cordillera (Morocco). Geochemistry, Geophysics, Geosystems, 12(12). https://doi.org/10.1029/2011GC003783
    Aubaud, C., Hauri, E. H., & Hirschmann, M. M. (2004). Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophysical Research Letters, 31(20). https://doi.org/10.1029/2004GL021341
    Baba, K., & Chave, A. D. (2005). Correction of seafloor magnetotelluric data for topographic effects during inversion. Journal of Geophysical Research: Solid Earth, 110(12), 1–16. https://doi.org/10.1029/2004JB003463
    Baba, K., & Seama, N. (2002). A new technique for the incorporation of seafloor topography in electromagnetic modelling. Geophysical Journal International, 150(2), 392–402. https://doi.org/10.1046/j.1365-246X.2002.01673.x
    Baba, K., Utada, H., Goto, T. N., Kasaya, T., Shimizu, H., & Tada, N. (2010). Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data. Physics of the Earth and Planetary Interiors, 183(1–2), 44–62. https://doi.org/10.1016/j.pepi.2010.09.010
    Baba, K., Tada, N., Zhang, L., Liang, P., Shimizu, H., & Utada, H. (2013). Is the electrical conductivity of the northwestern Pacific upper mantle normal? Geochemistry, Geophysics, Geosystems, 14(12), 4969–4979. https://doi.org/10.1002/2013GC004997
    Baba, K., Tada, N., Utada, H., & Siripunvaraporn, W. (2013). Practical incorporation of local and regional topography in three-dimensional inversion of deep ocean magnetotelluric data. Geophysical Journal International, 194(1), 348–361. https://doi.org/10.1093/gji/ggt115
    Baba, K., Tada, N., Matsuno, T., Liang, P., Li, R., Zhang, L., et al. (2017). Electrical conductivity of old oceanic mantle in the northwestern Pacific I: 1-D profiles suggesting differences in thermal structure not predictable from a plate cooling model. Earth, Planets and Space, 69(1). https://doi.org/10.1186/s40623-017-0697-0
    Bahr, K. (1988). Interpretation of the rnagnetotelluric impedance tensor: regional induction and local telluric distortion. Journal of Geophysics, 62, 119–127.
    Berdichevsky, M. N., Vanyan, L. L., Kuznetsov, V. A., Levadny, V. T., Mandelbaum, MM. ., Nechaeva, G. P., et al. (1980). Geoelectrical model of the Baikal region. Physics of the Earth and Planetary Interiors, 22, 1–11.
    Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). https://doi.org/10.1029/2001GC000252
    Booker, J. R. (2014, January 1). The Magnetotelluric Phase Tensor: A Critical Review. Surveys in Geophysics. Kluwer Academic Publishers. https://doi.org/10.1007/s10712-013-9234-2
    Cagniard, L. (1953). Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, 18(3), 605–635. https://doi.org/10.1190/1.1437915
    Caldwell, T. G., Bibby, H. M., & Brown, C. (2004). The magnetotelluric phase tensor. Geophysical Journal International, 158(2), 457–469. https://doi.org/10.1111/j.1365-246X.2004.02281.x
    Chang, S.-J., Ferreira, A. M. G., Ritsema, J., van Heijst, H. J., & Woodhouse, J. H. (2014). Global radially anisotropic mantle structure from multiple datasets: A review, current challenges, and outlook. Tectonophysics, 617, 1–19. https://doi.org/10.1016/j.tecto.2014.01.033
    Chave, Alan D., & Thomson, D. J. (2004). Bounded influence magnetotelluric response function estimation. Geophysical Journal International, 157(3), 988–1006. https://doi.org/10.1111/j.1365-246X.2004.02203.x
    Chave, Alan Dana., & Jones, A. G. (2012). The magnetotelluric method: Theory and practice. Cambridge University Press. https://doi.org/10.1017/CBO9781139020138
    Chen, J.-C. (1991). Geochemical studies of basalts from the Philippine Sea. Journal of Southeast Asian Earth Sciences, 6(2), 63–68. https://doi.org/10.1016/0743-9547(91)90096-G
    Chesley, C., Key, K., Constable, S., Behrens, J., & MacGregor, L. (2019). Crustal Cracks and Frozen Flow in Oceanic Lithosphere Inferred From Electrical Anisotropy. Geochemistry, Geophysics, Geosystems, 20(12), 5979–5999. https://doi.org/10.1029/2019GC008628
    Comeau, M. J. (2015). Electrical Resistivity Structure of the Altiplano-Puna Magma Body and Volcan Uturuncu from Magnetotelluric Data. University of Alberta. https://doi.org/10.7939/R3C24QW2S
    Constable, C., & Constable, S. (2023). A grand spectrum of the geomagnetic field. Physics of the Earth and Planetary Interiors, 344, 107090. https://doi.org/10.1016/j.pepi.2023.107090
    Constable, S., & Cox, C. S. (1996). Marine controlled‐source electromagnetic sounding: 2. The PEGASUS experiment. Journal of Geophysical Research: Solid Earth, 101(B3), 5519–5530. https://doi.org/10.1029/95JB03738
    Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. GEOPHYSICS, 52(3), 289–300. https://doi.org/10.1190/1.1442303
    Constable, Steven. (2006). SEO3: A new model of olivine electrical conductivity. Geophysical Journal International, 166(1), 435–437. https://doi.org/10.1111/j.1365-246X.2006.03041.x
    Cordell, D., Naif, S., Evans, R., Key, K., Constable, S., Shillington, D., & Bécel, A. (2023). Forearc seismogenesis in a weakly coupled subduction zone influenced by slab mantle fluids. Nature Geoscience, 16(9), 822–827. https://doi.org/10.1038/s41561-023-01260-w
    Danyushevsky, L. V., Eggins, S. M., Falloon, T. J., & Christie, D. M. (2000). H2O Abundance in Depleted to Moderately Enriched Mid-ocean Ridge Magmas; Part I: Incompatible Behaviour, Implications for Mantle Storage, and Origin of Regional Variations. Journal of Petrology, 41(8), 1329–1364. https://doi.org/10.1093/petrology/41.8.1329
    Diba, D., Uyeshima, M., Ichiki, M., Sakanaka, S., Tamura, M., Yuan, Y., et al. (2023). On a large magmatic fluid reservoir oblique to the volcanic front in the southern part of NE Japan revealed by the magnetotelluric survey. Earth, Planets and Space, 75(1). https://doi.org/10.1186/s40623-023-01899-0
    Egbert, G. D., Booker, J. R., & Schultz, A. (1992). Very long period magnetotellurics at Tucson observatory: estimation of impedances. Journal of Geophysical Research, 97(B11). https://doi.org/10.1029/92jb01252
    Egbert, Gary D., & Kelbert, A. (2012). Computational recipes for electromagnetic inverse problems. Geophysical Journal International, 189(1), 251–267. https://doi.org/10.1111/j.1365-246X.2011.05347.x
    Evans, R. L., Hirth, G., Baba, K., Forsyth, D., Chave, A., & Mackie, R. (2005). Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature, 437(7056), 249–252. https://doi.org/10.1038/nature04014
    Faccenda, M., Ferreira, A. M. G., Tisato, N., Lithgow-Bertelloni, C., Stixrude, L., & Pennacchioni, G. (2019). Extrinsic Elastic Anisotropy in a Compositionally Heterogeneous Earth’s Mantle. Journal of Geophysical Research: Solid Earth, 124(2), 1671–1687. https://doi.org/10.1029/2018JB016482
    Fujii, I., Ookawa, T., Nagamachi, S., & Owada, T. (2015). The characteristics of geoelectric fields at Kakioka, Kanoya, and Memambetsu inferred from voltage measurements during 2000 to 2011. Earth, Planets and Space, 67(1). https://doi.org/10.1186/s40623-015-0241-z
    Fukao, Y., Widiyantoro, S., & Obayashi, M. (2001). Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39(3), 291–323. https://doi.org/10.1029/1999RG000068
    Gamble, T. D., Goubau, W. M., & Clarke, J. (1979). Magnetotellurics with a remote magnetic reference. TABLES GEOPHYSICS (Vol. 44). Retrieved from http://segdl.org/
    Gardés, E., Gaillard, F., & Tarits, P. (2014). Toward a unified hydrous olivine electrical conductivity law. Geochemistry, Geophysics, Geosystems, 15(12), 4984–5000. https://doi.org/10.1002/2014GC005496
    Grayver, A. V. (2021). Global 3-D Electrical Conductivity Model of the World Ocean and Marine Sediments. Geochemistry, Geophysics, Geosystems, 22(9). https://doi.org/10.1029/2021GC009950
    Griffiths, D. J. (2017). Introduction to Electrodynamics (4th ed.). Cambridge University Press. https://doi.org/10.1017/9781108333511
    Hilde, T. W., & Lee, C.-S. (1984). Origin and evolution of the West Philippine Basin: a new interpretation. Tectonophysics, 102, 85–104. https://doi.org/https://doi.org/10.1016/0040-1951(84)90009-X
    Hobbs, B. A. (1992). Terminology and symbols for use in studies of electromagnetic induction in the Earth. Surveys of Geophysics, 13(4), 489–515.
    Hunter, J. A., & Crow, H. L. (2012). Shear wave velocity measurement guidelines for Canadian seismic site characterization in soil and rock. Natural Resources Canada. https://doi.org/10.4095/291753
    Isse, T., Shiobara, H., Montagner, J. P., Sugioka, H., Ito, A., Shito, A., et al. (2010). Anisotropic structures of the upper mantle beneath the northern Philippine Sea region from Rayleigh and Love wave tomography. Physics of the Earth and Planetary Interiors, 183(1–2), 33–43. https://doi.org/10.1016/j.pepi.2010.04.006
    Isse, T., Kawakatsu, H., Yoshizawa, K., Takeo, A., Shiobara, H., Sugioka, H., et al. (2019). Surface wave tomography for the Pacific Ocean incorporating seafloor seismic observations and plate thermal evolution. Earth and Planetary Science Letters, 510, 116–130. https://doi.org/10.1016/j.epsl.2018.12.033
    Kawakatsu, H., & Utada, H. (2017). Seismic and electrical signatures of the lithosphere-asthenosphere system of the normal oceanic mantle. Annual Review of Earth and Planetary Sciences, 45, 139–167. https://doi.org/10.1146/annurev-earth-063016-020319
    Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E., & Suyehiro, K. (2009). Seismic Evidence for Sharp Lithosphere-Asthenosphere Boundaries of Oceanic Plates. Science, 324(5926), 499–502. https://doi.org/10.1126/science.1169499
    Key, K. (2009). 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers. Geophysics, 74(2). https://doi.org/10.1190/1.3058434
    Key, K., & Constable, S. (2011). Coast effect distortion of marine magnetotelluric data: Insights from a pilot study offshore northeastern Japan. Physics of the Earth and Planetary Interiors, 184(3–4), 194–207. https://doi.org/10.1016/j.pepi.2010.11.008
    Kobayashi, K., & Nakada, M. (1978). Magnetic anomalies and tectonic evolution of the Shikoku inter-arc basin. Journal of Physics of the Earth, 26(Supplement), S391–S402. https://doi.org/10.4294/jpe1952.26.Supplement_S391
    Kohlstedt, D. L., Keppler, H., & Rubie, D. C. (1996). Solubility of water in the α, β and γ phases of (Mg,Fe) 2 SiO 4. Contributions to Mineralogy and Petrology, 123(4), 345–357. https://doi.org/10.1007/s004100050161
    Komiya, T., & Maruyama, S. (2007). A very hydrous mantle under the western Pacific region: Implications for formation of marginal basins and style of Archean plate tectonics. Gondwana Research, 11(1–2), 132–147. https://doi.org/10.1016/j.gr.2006.02.006
    Korenaga, T., Korenaga, J., Kawakatsu, H., & Yamano, M. (2021). A New Reference Model for the Evolution of Oceanic Lithosphere in a Cooling Earth. Journal of Geophysical Research: Solid Earth, 126(6). https://doi.org/10.1029/2020JB021528
    Krieger, L., & Peacock, J. R. (2014). MTpy: A Python toolbox for magnetotellurics. Computers and Geosciences, 72, 167–175. https://doi.org/10.1016/j.cageo.2014.07.013
    Lin, C., Zhong, S., Auken, E., Cai, H., Tan, H., Peng, M., & Kong, W. (2018). The effects of 3D topography on controlled-source audio-frequency magnetotelluric responses. Geophysics, 83(2), WB97–WB108. https://doi.org/10.1190/geo2017-0429.1
    Lizarralde, D., Chave, A., Hirth, G., & Schultz, A. (1995). Northeastern Pacific mantle conductivity profile from long‐period magnetotelluric sounding using Hawaii‐to‐California submarine cable data. Journal of Geophysical Research: Solid Earth, 100(B9), 17837–17854. https://doi.org/10.1029/95JB01244
    Matsuno, T., & Evans, Rob. L. (2017). Constraints on lithospheric mantle and crustal anisotropy in the NoMelt area from an analysis of long-period seafloor magnetotelluric data. Earth, Planets and Space, 69(1), 138. https://doi.org/10.1186/s40623-017-0724-1
    Matsuno, T., Suetsugu, D., Baba, K., Tada, N., Shimizu, H., Shiobara, H., et al. (2017). Mantle transition zone beneath a normal seafloor in the northwestern Pacific: Electrical conductivity, seismic thickness, and water content. Earth and Planetary Science Letters, 462, 189–198. https://doi.org/10.1016/j.epsl.2016.12.045
    Matsuno, T., Baba, K., & Utada, H. (2020). Probing 1-D electrical anisotropy in the oceanic upper mantle from seafloor magnetotelluric array data. Geophysical Journal International, 222(3), 1502–1525. https://doi.org/10.1093/gji/ggaa221
    Medin, A. E. (2008). The magnetotelluric inverse problem. University of California, San Diego. Retrieved from https://escholarship.org/uc/item/1jz440p3
    Michael, P. J. (1988). The concentration, behavior and storage of H2O in the suboceanic upper mantle: Implications for mantle metasomatism. Geochimica et Cosmochimica Acta, 52(2), 555–566. https://doi.org/10.1016/0016-7037(88)90110-X
    Miensopust, M. P., Queralt, P., & Jones, A. G. (2013). Magnetotelluric 3-D inversion—a review of two successful workshops on forward and inversion code testing and comparison. Geophysical Journal International, 193(3), 1216–1238. https://doi.org/10.1093/gji/ggt066
    Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., et al. (2019). A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic. Tectonics, 38(6), 1884–1907. https://doi.org/10.1029/2018TC005462
    Munch, F. D., & Grayver, A. (2023). Multi-scale imaging of 3-D electrical conductivity structure under the contiguous US constrains lateral variations in the upper mantle water content. Earth and Planetary Science Letters, 602. https://doi.org/10.1016/j.epsl.2022.117939
    Naif, S., Key, K., Constable, S., & Evans, R. L. (2013). Melt-rich channel observed at the lithosphere–asthenosphere boundary. Nature, 495(7441), 356–359. https://doi.org/10.1038/nature11939
    Ni, H., Zheng, Y.-F., Mao, Z., Wang, Q., Chen, R.-X., & Zhang, L. (2017). Distribution, cycling and impact of water in the Earth’s interior. National Science Review, 4(6), 879–891. https://doi.org/10.1093/nsr/nwx130
    Nicolas, A., & Christensen, N. I. (1987). Formation of anisotropy in upper mantle peridotites: A review (pp. 111–123). https://doi.org/10.1029/GD016p0111
    NOAA. (2022). ETOPO Global Relief Model | National Centers for Environmental Information (NCEI). https://doi.org/10.25921/fd45-gt74
    Obayashi, M., Yoshimitsu, J., & Fukao, Y. (2009). Tearing of Stagnant Slab. Science, 324(5931), 1173–1175. https://doi.org/10.1126/science.1172496
    Ohara, Y. (2006). Mantle process beneath Philippine Sea back-arc spreading ridges: A synthesis of peridotite petrology and tectonics. Island Arc, 15(1), 119–129. https://doi.org/10.1111/j.1440-1738.2006.00515.x
    Okino, K., Kasuga, S., & Ohara, Y. (1998). A New Scenario of the Parece Vela Basin Genesis. Marine Geophysical Researches, 20, 21–40. https://doi.org/10.1023/A:1004377422118
    Parkinson, W. D. (1962). The Influence of Continents and Oceans on Geomagnetic Variations. Geophysical Journal of the Royal Astronomical Society, 6(4), 441–449. https://doi.org/10.1111/j.1365-246X.1962.tb02992.x
    Rung-Arunwan, T., Siripunvaraporn, W., & Utada, H. (2016, April 1). On the Berdichevsky average. Physics of the Earth and Planetary Interiors. Elsevier B.V. https://doi.org/10.1016/j.pepi.2016.01.006
    Saal, A. E., Hauri, E. H., Langmuir, C. H., & Perfit, M. R. (2002). Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature, 419(6906), 451–455. https://doi.org/10.1038/nature01073
    Salters, V. J. M., & Stracke, A. (2004). Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5). https://doi.org/10.1029/2003GC000597
    Savov, I. P., Hickey-Vargas, R., D’Antonio, M., Ryan, J. G., & Spadea, P. (2006). Petrology and Geochemistry of West Philippine Basin basalts and early Palau-Kyushu arc volcanic clasts from ODP Leg 195, Site 1201D: Implications for the early history of the Izu-Bonin-Mariana arc. Journal of Petrology, 47(2), 277–299. https://doi.org/10.1093/petrology/egi075
    Schwalenberg, K., & Edwards, R. N. (2004). The effect of seafloor topography on magnetotelluric fields: An analytical formulation confirmed with numerical results. Geophysical Journal International, 159(2), 607–621. https://doi.org/10.1111/j.1365-246X.2004.02280.x
    Seton, M., Müller, R. D., Zahirovic, S., Williams, S., Wright, N. M., Cannon, J., et al. (2020). A Global Data Set of Present-Day Oceanic Crustal Age and Seafloor Spreading Parameters. Geochemistry, Geophysics, Geosystems, 21(10), e2020GC009214. https://doi.org/10.1029/2020GC009214
    Shimakawa, Y., & Honkura, Y. (1991). Electrical conductivity structure Beneath the Ryukyu trench-arc system and its relation to the subduction of the Philippine Sea plate. Journal of Geomagnetism and Geoelectricity, 43(1), 1–20. https://doi.org/10.5636/jgg.43.1
    Shimizu, H., Yoneda, A., Baba, K., Utada, H., & Palshin, N. A. (2011). Sq effect on the electromagnetic response functions in the period range between 104 and 105 s. Geophysical Journal International, 186(1), 193–206. https://doi.org/10.1111/j.1365-246X.2011.05036.x
    Shiobara, H., Baba, K., Utada, H., & Hukao, Y. (2009). Ocean bottom array probes stagnant slab beneath the Philippine Sea. Eos, Transactions American Geophysical Union, 90(9), 70–71. https://doi.org/10.1029/2009EO090002
    Simons, K., Dixon, J., Schilling, J., Kingsley, R., & Poreda, R. (2002). Volatiles in basaltic glasses from the Easter‐Salas y Gomez Seamount Chain and Easter Microplate: Implications for geochemical cycling of volatile elements. Geochemistry, Geophysics, Geosystems, 3(7), 1–29. https://doi.org/10.1029/2001gc000173
    Simpson, F., & Bahr, K. (2005). Practical Magnetotellurics. Practical Magnetotellurics (Vol. 9780521817271). Cambridge University Press. https://doi.org/10.1017/CBO9780511614095
    Sobolev, A. V., & Chaussidon, M. (1996). H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle. Earth and Planetary Science Letters, 137(1–4), 45–55. https://doi.org/10.1016/0012-821X(95)00203-O
    Szarka, L., & Menvielle, M. (1997). Analysis of rotational invariants of the magnetotelluric impedance tensor. Geophysical Journal International, 129(1), 133–142. https://doi.org/10.1111/j.1365-246X.1997.tb00942.x
    Tada, N., Baba, K., & Utada, H. (2014). Three-dimensional inversion of seafloor magnetotelluric data collected in the Philippine Sea and the western margin of the northwest Pacific Ocean. Geochemistry, Geophysics, Geosystems, 15(7), 2895–2917. https://doi.org/10.1002/2014GC005421
    Tarits, P., Hautot, S., & Perrier, F. (2004). Water in the mantle: Results from electrical conductivity beneath the French Alps. Geophysical Research Letters, 31(6). https://doi.org/10.1029/2003GL019277
    Tikhonov, A. N. (1950). On determining electrical characteristics of the deep layers of the earth’s crust. Doklady Akademii Nauk, 73(2), 295–297.
    Unsworth, M. J., Malin, P. E., Egbert, G. D., & Booker, J. R. (1997). Internal structure of the San Andreas fault at Parkfield, California. Geology, 25(4), 359. https://doi.org/10.1130/0091-7613(1997)025<0359:ISOTSA>2.3.CO;2
    Usui, Y., Kasaya, T., Ogawa, Y., & Iwamoto, H. (2018). Marine magnetotelluric inversion with an unstructured tetrahedral mesh. Geophysical Journal International, 214(2), 952–974. https://doi.org/10.1093/gji/ggy171
    Utada, H. (2015). Electromagnetic exploration of the oceanic mantle. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 91(6), 203–222. https://doi.org/10.2183/pjab.91.203
    Utada, H. (2019). Ocean bottom geophysical array studies may reveal the cause of seafloor flattening. Earth and Planetary Science Letters, 518, 100–107. https://doi.org/10.1016/j.epsl.2019.04.040
    Weaver, J. T., Agarwal, A. K., & Lilley, F. E. M. (2000). Characterization of the magnetotelluric tensor in terms of its invariants. Geophysical Journal International, 141, 321–336. https://doi.org/10.1046/j.1365-246x.2000.00089.x
    Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515
    Workman, R. K., & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1–2), 53–72. https://doi.org/10.1016/j.epsl.2004.12.005
    Yang, J., Min, D.-J., & Yoo, H.-S. (2010). Sea effect correction in magnetotelluric (MT) data and its application to MT soundings carried out in Jeju Island, Korea. Geophysical Journal International, 182(2), 727–740. https://doi.org/10.1111/j.1365-246X.2010.04676.x
    Yoshino, T. (2021). Electrical Properties of Rocks. In H. K. Gupta (Ed.), Encyclopedia of Solid Earth Geophysics (pp. 339–344). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-58631-7_45
    Zhao, D., Fujisawa, M., & Toyokuni, G. (2017). Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9). Scientific Reports, 7. https://doi.org/10.1038/srep44487

    下載圖示
    QR CODE