簡易檢索 / 詳目顯示

研究生: 陳楷旻
Chen, Kai-Min
論文名稱: 宜蘭縣清水溪集水區崩塌量變化之原因探討
Variance factors of landslides mass in the watershed of Qinshei River, Yilan County
指導教授: 張國楨
Chang, Kuo-Chen
口試委員: 張國楨
Chang, Kuo-Chen
陳俊愷
Chen, Jun-Kai
口試日期: 2021/07/25
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 66
中文關鍵詞: 集水區崩塌深度崩塌量體推估
英文關鍵詞: Catchment, Landslides depth, Landslides volume estimation
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101061
論文種類: 學術論文
相關次數: 點閱:171下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年氣候變遷加劇與臺灣特殊的地理環境,造成了不少的重大土砂災害事件。位居東北區域的宜蘭地區,在一年四季皆有雨的情形下,山區崩塌地更是易受降雨事件的影響,產生崩塌現象。根據相關計畫調查,每年蘭陽溪流域皆有著可觀的崩塌量體從坡面傾瀉至河道中,其中蘭陽溪每年生產的土砂,近四分之一的量體來自清水溪集水區坡面的崩塌地,進而對河道下游地帶一些居民、財產等保全對象上,恐有安全疑慮之虞。
    有鑑於崩塌量體對於集水區的危害,現今許多防災、學術研究等單位皆著手致力於精準推估崩塌量體可能產生的數量多寡,以及推測量體產生之區域分布,遂發展許多分析模型等方法。故本研究亦針對蘭陽溪流域主要崩塌量體來源的主要河川──清水溪,以該集水區為研究主軸,使用兩期年度的數值高程模型及眾多地文因子圖層,搭配崩塌深度研究方法的理論,套用一個適用於本研究區域之迴歸式模型,並由每一個網格崩塌深度與面積的乘積,推估清水溪集水區內的崩塌量體體積。
    根據本研究成果顯示,本研究所使用之崩塌深度迴歸式模型,修正自由度的迴歸判定係數可達0.97,可有效解釋清水溪集水區內的崩塌量體體積推估,並從相關地文圖層與崩塌量體的空間分布位置,得知清水溪集水區的崩塌深度會受坡度、地形濕度指數等地文因子影響;在地層方面,也會受到表土岩層特性、崩塌型態的影響,使崩塌量體多發生在頁岩層、砂岩層的淺層崩塌區域內。希冀本研究對於該區域未來有關之土砂治理計畫,可供參考與提供實質建議,以達到實際減災效果。

    Given the deteriorating climate change and the unique geographic context of Taiwan, many major landslides crisis occurred in the recent years. Locating at north-eastern area of Taiwan, mountain areas in Yilan is subjects to landslides due to the year-round precipitation events. According to relevant survey, a significant amount of landslide volume was transported from the slope to the channel in the drainage basin of Lanyang River. Among the sediments produced by Lanang river annually, around a quarter of the volume are contributed by the landslides from the slope of Chingshuei River, which threatens the safety of residences and properties downstream of the river.
    Due to the threat of landslides to the drainage, many disaster prevention and academic institutions have been working on to precisely predict the amount of potential landslide volume outcome, and to estimate the distribution of the volumes occurring. Hence, many analytic models are developed. This research targeted the main sources of volume in the drainage basin of Lanyang River, Chingsuei River. Using digital elevation model of two years and several geomorphic factors in combined with the theory of landslides depth research, this research develops a regression model suitable for this research area. From the multiplication of the landslides depth and area, the volume of the landslides in the catchment of Chingshuei River can be estimated.
    The results show that with the regression model of landslides depth, the adjusted coefficient of determination is 0.97, meaning that the model can effectively explain the estimation of landslides volume in the catchment of Chingshuei River. From the distribution of geomorphic factor layers and volume, we know that landslides depth would be affected by geomorphic factors such as slope and terrain wetness index. As for the stratum, due to the influence of rock formation in the topsoil and the form of landslides, shallow layer area with shale bed and sandstone bed are more subject to landslides. It is expected that this research will contribute practical suggestions to the future sediment mitigation project of this area and serve as the reference in order to achieve disaster mitigation.

    第壹章 緒論 1 第一節 研究動機 1 第二節 研究目的 3 第三節 研究限制 3 第貳章 文獻回顧 5 第一節 崩塌量體推估有關研究 5 2-1-1 崩塌面積迴歸式 7 2-1-2 崩塌深度簡易分類法 9 2-1-3 小結 11 第二節 崩塌深度迴歸式模型 12 2-2-1 通用崩塌深度平衡方程式 12 2-2-2 坡度參數 15 2-2-3 距河道距離參數 15 2-2-4 地形曲率參數 16 2-2-5 地形濕度指數(TWI) 18 2-2-6 小結 18 第三節 流域土砂來源有關研究 19 2-3-1 蘭陽溪流域土砂來源有關研究 19 2-3-2 子集水區土砂來源有關研究 20 2-3-3 清水溪集水區崩塌量體驗證資料 21 2-3-4 小結 22 第四節 統計分析與驗證方法 22 2-4-1 相關性分析 22 2-4-2 迴歸分析 23 2-4-3 模型區域驗證 23 2-4-4 小結 24 第參章 研究方法 25 第一節 研究區域概述 27 第二節 研究資料 28 3-2-1 崩塌地圖層 28 3-2-2 環境地文資料 29 第三節 研究流程 32 3-3-1 崩塌深度迴歸式模型 32 3-3-2 坡度、地形曲率與內差分析方法 33 3-3-3 水系劃分及幾何距離分析 35 3-3-4 地形濕度指數分析 36 第四節 崩塌量體推估驗證 37 3-4-1 變數相關性分析與線性迴歸分析 37 3-4-2 區域崩塌量體推估值與對照組 38 第肆章 結果與討論 40 第一節 區域驗證之線性迴歸分析 40 第二節 崩塌深度與地文因子相關性分析 42 4-2-1 坡度與深度 42 4-2-2 距河道距離與深度 44 4-2-3 地形曲率與深度 46 4-2-4 地形濕度指數與深度 48 第三節 次級集水區崩塌量體空間分布探討 50 4-3-1 牛鬥山 51 4-3-2 燒水溪 52 4-3-3 石門溪 53 第伍章 總結 55 第一節 結論 55 第二節 建議 56 5-2-1 空間資料精確度 56 5-2-2 多時期資料尺度 57 參考文獻 58 一、專書 58 二、論文集 58 三、期刊論文 59 附錄 62

    一、專書
    呂育勳(2011)。蘭陽溪等中、上游集水區梅姬颱風災後調查及治理策略評估。頁1-879。行政院農業委員會水土保持局臺北分局。
    李偉哲(2014)。103年度集水區上游水土保持需求性調查。頁1-431。行政院農業委員會水土保持局。
    周天穎(2008)。地理資訊系統理論與實務。頁1-381。儒林出版社。
    連惠邦(2017)。土砂災害與防治。頁1-724。五南圖書出版股份有限公司。
    陳柏亨(2018)。大規模土砂重點區多元尺度監測調查及變遷分析。頁1-732。行政院農業委員會水土保持局臺北分局。
    歐鑫同(2020)。109年宜蘭縣土砂災害風險分析與防災決策支援應用。頁1-318。行政院農業委員會水土保持局臺北分局。
    Lillesand, T. M., Chipman, J. W., & Kiefer, R. W. Remote sensing and image interpretation (Seventh edition ed., pp. xii, 720 pages).
    二、論文集
    宋健豪(2014)。蘭陽溪上游流域降雨量、逕流量、輸砂量之趨勢分析。國立臺灣師範大學地理學系碩士論文,台北市。
    李承玫(2014)。宜蘭縣大同鄉土地利用與邊坡崩塌之災害潛勢分析。國立臺灣師範大學地理學系碩士論文,台北市。
    周伯愷(2019)。臺北水源特定區土砂產量與濁度關係之研究。國立臺北科技大學土木工程系土木與防災博士論文,台北市。
    范姜俐錡(2016)。花蓮溪輸砂量之長期變動趨勢。國立彰化師範大學地理學系碩士論文,彰化縣。
    許家豪(2006)。應用DEM萃取集水區水系門檻值變異與影響因素之探討。國立中興大學水土保持學系所碩士論文,台中市。
    連中豪(2013)。宜蘭清水溪流域河道變化及輸砂行為分析。國立臺灣師範大學地球科學系碩士論文,台北市。
    郭佳韋(2013)。自然斜坡土壤深度推估方法探討。國立中央大學應用地質研究所碩士論文,桃園縣。
    陳莉君(2017)。利用人工智慧預估河道流路之變遷以蘭陽溪中下游為例。中華大學土木工程學系碩士論文,新竹市。
    陳智誠(2015)。宜蘭縣碼崙溪集水區土砂災害之研究。國立臺北科技大學土木工程系土木與防災碩士班(碩士在職專班)碩士論文,台北市。
    陳毅青(2012)。降雨誘發崩塌侵蝕之規模頻率及其控制因子。國立臺灣大學土木工程學研究所碩士論文,台北市。
    曾信雄(2019)。以量化分析探討低度變質岩之變形行為-以宜蘭清水地熱區為例。國立臺北科技大學資源工程研究所碩士論文,台北市。
    楊旻穎(2018)。河道清淤影響範圍快評法技術開發。國立高雄第一科技大學營建工程系碩士專班碩士論文,高雄市。
    謝妮(2019)。頭前溪與蘭陽溪流域之降雨量、山崩及河川化性之關係。國立臺灣大學地質科學研究所碩士論文,台北市。
    韓宜霖(2016)。集水區土砂流失及生產推估之研究。逢甲大學水利工程與資源保育學系碩士論文,台中市。
    三、期刊論文
    陳樹群, 吳俊鋐, & 王雁平(2010)。地震或降雨誘發崩塌之崩塌特性探討。中華水土保持學報, 41(2),頁 94-112。
    陳樹群, & 馮智偉(2005)。應用Logistic迴歸繪製崩塌潛感圖-以濁水溪流域為例。中華水土保持學報, 36(2),頁 191-201。
    詹勳全, 張嘉琪, 陳樹群, 魏郁軒, 王昭堡, & 李桃生(2015)。台灣山區淺層崩塌地特性調查與分析。Journal of Chinese Soil and Water Conservation, 46(1),頁 19-28。
    壽克堅, 費立沅, 陳勉銘, 梁均合, 黃怡婷, & 林佳霏(2014)。蘭陽溪上游之地形地質對河床土砂之影響。Journal of Chinese Soil and Water Conservation, 45(4),頁 225-233。
    Borga, M., Dalla Fontana, G., & Cazorzi, F. (2002). Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index. Journal of Hydrology, 268(1), 56-71.
    Cascini, L., Ciurleo, M., & Di Nocera, S. (2017). Soil depth reconstruction for the assessment of the susceptibility to shallow landslides in fine-grained slopes. Landslides, 14(2), 459-471.
    Catani, F., Segoni, S., & Falorni, G. (2010). An empirical geomorphology‐based approach to the spatial prediction of soil thickness at catchment scale. Water resources research, 46(5).
    DeRose, R., Trustrum, N., & Blaschke, P. (1991). Geomorphic change implied by regolith—slope relationships on steepland hillslopes, Taranaki, New Zealand. Catena, 18(5), 489-514.
    Dibaba, M. B. (2019). The influence of soil depth models on simulating slope instability: The case of Southern Dominica.
    Dietrich, W. E., Reiss, R., Hsu, M. L., & Montgomery, D. R. (1995). A process‐based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological processes, 9(3‐4), 383-400.
    Fan, B., Tao, W., Qin, G., Hopkins, I., Zhang, Y., Wang, Q., . . . Guo, L. (2020). Soil micro-climate variation in relation to slope aspect, position, and curvature in a forested catchment. Agricultural and Forest Meteorology, 290, 107999.
    Gallant, J. C., & Dowling, T. I. (2003). A multiresolution index of valley bottom flatness for mapping depositional areas. Water resources research, 39(12).
    Gessler, P., Chadwick, O., Chamran, F., Althouse, L., & Holmes, K. (2000). Modeling soil–landscape and ecosystem properties using terrain attributes. Soil Science Society of America Journal, 64(6), 2046-2056.
    Guzzetti, F., Ardizzone, F., Cardinali, M., Galli, M., Reichenbach, P., & Rossi, M. (2008). Distribution of landslides in the Upper Tiber River basin, central Italy. Geomorphology, 96(1-2), 105-122.
    Hovius, N., Stark, C. P., & Allen, P. A. (1997). Sediment flux from a mountain belt derived by landslide mapping. Geology, 25(3), 231-234.
    IIDA, T., & Okunishi, K. (1983). Development of hillslopes due to landslides. Zeitschrift für Geomorphologie. Supplementband, 46, 67-77.
    Jafari, A., Finke, P., Vande Wauw, J., Ayoubi, S., & Khademi, H. (2012). Spatial prediction of USDA‐great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. European Journal of Soil Science, 63(2), 284-298.
    Kuriakose, S. L., Devkota, S., Rossiter, D., & Jetten, V. (2009). Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India. Catena, 79(1), 27-38.
    Lanni, C., McDonnell, J., Hopp, L., & Rigon, R. (2013). Simulated effect of soil depth and bedrock topography on near‐surface hydrologic response and slope stability. Earth surface processes and landforms, 38(2), 146-159.
    Montgomery, D. R., & Dietrich, W. E. (1994). A physically based model for the topographic control on shallow landsliding. Water resources research, 30(4), 1153-1171.
    Nguyen, V. B.-Q., & Kim, Y.-T. (2020). Rainfall-Earthquake-Induced Landslide Hazard Prediction by Monte Carlo Simulation: A Case Study of MT. Umyeon in Korea. KSCE Journal of Civil Engineering, 24(1), 73-86.
    Sarkar, S., Roy, A. K., & Martha, T. R. (2013). Soil depth estimation through soil-landscape modelling using regression kriging in a Himalayan terrain. International Journal of Geographical Information Science, 27(12), 2436-2454.
    Segoni, S., Rossi, G., & Catani, F. (2012). Improving basin scale shallow landslide modelling using reliable soil thickness maps. Natural Hazards, 61(1), 85-101.
    Xia, X., & Liang, Q. (2018). A new depth-averaged model for flow-like landslides over complex terrains with curvatures and steep slopes. Engineering Geology, 234, 174-191.
    Yang, Q., Zhang, F., Jiang, Z., Li, W., Zhang, J., Zeng, F., & Li, H. (2014). Relationship between soil depth and terrain attributes in karst region in Southwest China. Journal of soils and sediments, 14(9), 1568-1576.

    無法下載圖示 電子全文延後公開
    2026/08/11
    QR CODE