簡易檢索 / 詳目顯示

研究生: 郭家瑋
Guo, Jia-Wei
論文名稱: 多項式作輾轉相除法所需次數的估計
The Number of Steps in the Polynomial Euclidean Algorithm
指導教授: 許志農
Hsu, Chih-Nung
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 11
中文關鍵詞: 輾轉相除法有限體
英文關鍵詞: Euclidean Algorithm, finite fields
論文種類: 學術論文
相關次數: 點閱:317下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 任給定一有限體上次數大於1的多項式M,此篇文章主要是估計:所有次數小於M,與M互質的多項式a,跟M做輾轉相除法所需的平均次數。

    Let M be a monic polynomial over some finite fields. For polynomials a with deg a<deg M and (a,M)=1, we estimate the average value of the Euclidean Algorithm.

    1.Introduction, page 1 2.Continued Fractions, page 3 3.Main Theorem, page 5 4.Auxiliary Lemmas, page 10

    [1] H. Heilbronn,
    On the average length of a class of finite continued fractions,
    {\it Abhandlungen aus Zahlentheorie und Analysis,} VEB Deutsher Verlag, Berlin 1968.
    [2] R. Lidl and H. Niederreiter,
    {\it Finite Fields},
    Cambridge University Press (1997).
    [3] M. Rosen,
    {\it Number Theory in Function Fields},
    Springer-Verlag, GTM 210 (2002).
    [4] Chih-Nung, Hsu,
    A Polynomial Additive Divisor Problem.
    [5] J. D. Dixon,
    The number of steps in the Euclidean algorithm,
    {\it J. Number Theory} 2 (1970), 414--422.
    [6] T. Tonkov,
    On the average length of a class of finite continued fractions,
    {\it Acta Arith.} 26 (1974), 47--57.
    [7] J. W. Porter,
    On a theorem of Heilbronn,
    {\it Mathematika.} 22 (1975), 20--28.
    [8] H. Davenport,
    {\it Multiplicative Number Theory},
    Springer-Verlag, GTM 74 (1980).
    [9] G. H. Norton,
    On the asymptotic analysis of the Euclidean algorithm,
    {\it J. Symbolic Computation} 10 (1990) 53--58.
    [10] G. W. Effinger and D. R. Hayes,
    {\it Additive Number Theory of Polynomials
    Over a Finite Field},
    Clarendon Press Oxford (1991).

    下載圖示
    QR CODE