簡易檢索 / 詳目顯示

研究生: 翁孟倫
論文名稱: 砷化氮鎵/砷化鎵 三井量子結構的光譜研究
指導教授: 陸健榮
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2003
畢業學年度: 91
論文頁數: 72
中文關鍵詞: 砷化氮鎵砷化家電子有效質量光調製反射光譜螢光光譜
論文種類: 學術論文
相關次數: 點閱:221下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用光調制反射光譜(PR)及螢光光譜(PL)來研究由MOCVD長成的GaAs/GaNxAs1-x 三量子井結構樣品。藉由光調制反射光譜的溫度變化,實驗結果發現砷化鎵能隙與量子井能階躍遷訊號都是隨著溫度的升高,單純地往低能量偏移的現象。
    由螢光光譜的實驗結果,我們觀察到砷化鎵能隙與量子井的相關訊號。藉由螢光光譜的溫度變化,發現砷化氮鎵量子井相關訊號存在著一個不尋常的發光現象,隨著溫度的升高,其峰值能量的改變呈現先藍移再紅移的能量變化。
    在GaNxAs1-x/GaAs三量子井結構的PR實驗結果中,藉由量子井躍遷的訊號,我們以type Ⅰ的能帶結構來計算GaNxAs1-x電子的有效質量,得到GaNxAs1-x電子的有效質量分別為0.19m0 及0.10m0。本論文並探討經過快速熱退火處理(RTA)的樣品,其量子井躍遷訊號能量及強度有何變化。

    We have investigated the interband transitions in GaNAs/GaAs triple quantum wells by photoluminescence and photoreflectance. The samples used in our experiments were grown by Metal-Organic Chemical Vapor Deposition. The photoreflectance spectral peaks of the quantum well transitions were blue shifted as the temperature decreased.
    In the photoluminescence, the spectral peaks were red shifted as the temperature decreased below 50 K. The anomalous red shift may be due to the carrier localization at potential fluctuations.
    The interband transition energies for GaNAs/GaAs QWs agree with observed spectral peaks positions if a type-Ⅰ band line QWs is assumed. The influence of rapid thermal annealing on the quantum well transition energies is also analyzed and compared with physical models

    摘要………………………………………………………………… Ⅰ 目錄………………………………………………………………… Ⅱ 圖目錄……………………………………………………………… Ⅳ 第一章 簡介……………………………………………… 1 第二章 光調制與螢光光譜原理 2-1 電子躍遷理論………………………………………… 4 2-2 光學函數與電子躍遷的關係………………………… 7 2-3 調制光譜的基本原理………………………………… 13 2-4 電場調制……………………………………………… 19 2-5 弱電場調制…………………………………………… 23 2-6 光調制反射光譜的機制……………………………… 25 2-7 光激螢光的機制……………………………………… 27 第三章 實驗與結果 3-1 樣品結構……………………………………………… 30 3-2 光調制實驗…………………………………………… 32 3-3 調制實驗的光譜結果………………………………… 35 3-4 光激螢光實驗………………………………………… 38 3-5 光激螢光實驗的光譜結果…………………………… 40 第四章 調制光譜譜形的分析與討論 4-1 量子井能階躍遷的計算……………………………… 42 4-2 GaNxAs1-x的能隙與BAC model……………………… 46 4-3 應力對GaNAs能帶結構的影響……………………… 49 4-4 GaNxAs1-x電子有效質量…………………………… 54 4-5 量子井躍遷的分析結果……………………………… 57 第五章 螢光光譜結果與分析 5-1 螢光光譜特徵………………………………………… 61 5-2 熱退火對光譜的影響………………………………… 66 第六章 結論……………………………………………… 68 參考文獻 ………………………………………………… 69

    1.K. Uesugi, N. Morooka, and I. Suemune, Appl. Phys. Lett.74, 1254 (1999).
    2.Katsuhiro Uesugi, Ikuo Suemune, Tatsuo Hasegawa, Tomoyuki Akutagawa, And Takayoshi Nakamura, Appl. Phys. Lett. 76, 1285 (2000).
    3.J. D. Perkins, A. Mascarenhas, Yong Zhang, J. F. Geisz, D.J. Friedman, J. M. Olson, and Sarah R. Kurtz, Phys. Rev. Lett. 82, 3312 (1999).
    4.R. Bhat, C. Caneau, Lourdes Salamanca-Riba, W. Bi, C. Tu, J. Crystal Growth 195 (1998).
    5.Claude Cohen-Tannoudji, Bernard Diu & Franck Laloeë, “Quantum Mechanics”, Ch. 13.
    6.‘Optical Properties of Solids’, edited by F. Abeles, chap. 2.
    7.N. Peyghambarian, S. W. Koch and A. Mysyrowicz,‘Introduction to Semiconductor Optics’, chap.Ⅵ.
    8.B. O. Seraphin, ‘The effect of an Electric Field on Reflectivity Hulin’, Academic, Dunod, Paris (1964).
    9.D. Huang, G. Ji, U. K. Reddy, H. Morkoc, F. Xiong and T. A. Tombrello, “Photoreflectance, Absorption, and Nuclear Resonance Reaction Studies of AlxGa1-xAs Grown by Molecular-Beam Epitaxy”, J. Appl. Phys., 63, pp. 5447-5443 (1998).
    10.Alok K. Berry, D. K Gaskill and G. T. Stauf, “Photoreflectance of semi-insulating InP: Resistivity effects on the exction phase”, Appl. Phys. Lett. 58, pp2824-2826 (1991).
    11.O. J. Glembocki, N. Bottka and J. E. Fuxrneaux, J. Appl. Phys., Vol. 57, pp. 432-437 (1985).
    12.F. H. Pollak, O. J. Glembocki, Spectroscopic Characterization Techniques for Semiconductor Technology III, Vol.946. (SPIE, California, 1988), p.2-35.
    13.B. O. Seraphin and N. Bottka, Phys. Rev. 145, 628 (1966).
    14.Landau and Lifshitz , “Quantum Mechanics”, 2nded.,Mathematical Appendices.
    15.D. E. Aspnes, Phys. Rev. 147,554(1966).
    16.K. Suzuki, and J. C. Hensel, Bull. Am. Phys. Soc. 14, 113 (1969). D. E. Aspnes, Phys. Rev.147, 554 (1966).
    17.T. S. Moss, “Handbook on Semiconductors”, North Holland, N. Y. ,Vol. 2. p109 (1980).
    18.M. Cardona, “Modulation Spectroscopy”, Academic, N. Y. (1969).
    19.D. G. Seiler and C. L. Littler “The Spectroscopy of Semiconductors”, Vol. 2, p255.
    20.U. Tisch, E. Finkman, and J. Salzman, Appl. Phys. Lett., 81, 463 (2002).
    21.J. Toivonen, T. Hakkarainen, M. Sopanen, H. Lipsanen, J. Crystal Growth 221 (2000).
    22.G. Pozina, I. Ivanov, and B. Monemar, “Properites of Moecular-beam Epitaxy-grown GaNAs from Optical Spectroscopy”, J. Appy. Phys., 84, pp. 3830-3835 (1998).
    23.W. Shan, W. Walukiewicz, J. W. Ager Ⅲ, Phys. Rev. Lett. 82, 1221 (1999).
    24.W. Shan, W. Walukiewicz, K. M. Yu , J. W. Ager III , E. E. Haller , J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, H. P. Xin, and C. W. Tu, Phys. Stat. sol. (b) 223, 75 (2001).
    25.Jasprit Sinch “physics of Semiconductor and their Heterostuctures” vol. 5, p169. P185.
    26.A. J. Fischer, W. Shan, and J. J. Song, Y. C. Chang, R. Horning and B. Goldenberg, Appl. phys. Lett. 71, 1981 (1997).
    27.A. Yu. Egorov, E. S. Semenova, V. M. Ustinov, Y. G. Hong, and C. Tu, Semiconductors, Vol. 36, No. 9, 2002, pp. 981-984.
    28.M P C M Krijn, Semicond. Sci. Technol. 6 (1991) 27-31.
    29.F. Bousbih, S. Ben Bouzud, R. Chtourou, F. F Charfi, J. C. Harmand, G. Ungaro, Materials Science and Engineering C 21 (2002) 251-254.
    30.M. H Ya, Y. F. Chen, Y. S. Huang, J. Appl. Phys., 92, 1446, (2002).
    31.L. Bellaiche, S.-H. Wei, and Alex Zunger, Phys. Rev. B 54, 17568 (1996).
    32.P. N. Hai, W. M. Chen, and I. A. Buyanova, H. P. Xin and C. W. Tu, Appl. Phys. Lett. 77, 1843 (2000).
    33.Y. Zhang, A. Mascarenhas, H. P. Xin, and C. W. Tu, Phys. Rev. B 61, 7479, (2000).
    34.P. N. Hai, W. M.Chen, I.A. Buyanova, H. P. Xin and C. W. Tu, Appl. Phys. Lett., 77, 1843 (2000).
    35.C. Skierbiszewski, S. P. Lepkowski, P. Perlin, T. Suski, W. Jantsch, J. Geisz, Physica E, 13, 1078 (2002).
    36.A. Yu. Egorov, V. A. Odnoblyudov, N. V. Krizhanovskaya, V. V. Mamutin, and V. M. Ustinov, Semiconductors, Vol. 36, No. 12, 2002, pp. 1355-1359.
    37.U. Tisch, E. Finkman, and J. Salzman, Appl. Phys. Lett., 81, 463 (2002).
    38.M. A. Pinault, E. Tournie, Appl. Phys. Lett., 78, 1562 (2001).
    39.L. Grenouillet, C. Bru-Chevallier, and G. Guillot, J. Appl. Phys., 91, 5902, (2002).
    40.L. H. Li, Z. Pan, W. Zhang, Y. W. Lin, Z. O. Zhou. And R. h. Wu, J. Appl. Phys., 87, 245, (2000).
    41.I. A. Buyanova, G. Pozina, P. N. Hai, N. Q. Thinh, J. P. Bergman, W. M.Chen, H. P. Xin, and C. W. Tu, Appl. Phys. Lett. 77, 2325 (2000).
    42.Chien-rong Lu, Fu-Kwan Hwang, and James Robert Anderson, Jpn. J. Appl. Phys. Vol. 39 (2000) Suppl. 39-1, pp. 368-369
    43.E. M. Daly, T. J. Glynn, J. D. Lambkin, L. Considine, and S. Walsh, Phys. Rev. B 52, 4696, (1995).

    QR CODE