簡易檢索 / 詳目顯示

研究生: 劉謙
Liu, Chien
論文名稱: 使用鐵電負電容效應之低電壓超陡峭斜率電晶體模型及設計
The Model and Design of Super-Steep Slope Field-Effect Transistor with Ferroelectric Negative Capacitance for Low-Voltage Applications
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 59
中文關鍵詞: HZO陡峭次臨界斜率負電容UTB-DG
英文關鍵詞: HZO, Steep Subthreshold Slope, NC, UTB-DG
論文種類: 學術論文
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著元件微縮達到物理極限,鐵電負電容這項概念將是一個能突破現況的轉捩點,目前此領域不管是UC Berkeley的S. Salahuddin教授或Fraunhofer Center的Johannes Müller等專家都已推廣鐵電負電容概念。
    室溫下的MOSFET之Boltzmann tyranny物理極限2.3kbT/decade限制了開關特性斜率,堆疊鐵電層(FE) 作為具有負電容(NC)效應之介電層提供低開啟電壓(< 0.2 V)像穿戴式裝置、生物醫學電子與物聯網(IoT)應用之可行辦法,為了驗證NC的概念可將body factor (m)<1,利用Landau model模擬NC效應並建立其理論模型。然而,負電容效應中最具代表性的電滯迴圈會因鐵電層厚度而產生電滯現象,此現象對於製作記憶體很重要;但是為了應用在CMOS操作上,電滯現象就會成為元件性能上缺點,所以需要找到能不產生電滯現象且具有最小次臨界擺幅(SS)的最佳鐵電層厚度才能達到陡峭斜率電晶體。鐵電負電容目前被廣泛運用成NCFET並證實其有效性,而為了使電性臻於完美,傳輸機制(n factor)也是另外一項可改善的參數,搭配ultra-thin body與double gate成為UTB-DG-NCFET能使SS明顯下降,最後再結合tunneling FET三種加強效果下誕生了能在 0.2V內完全開啟的UTB-DG-NCTFET,此元件達到了未來sub-10nm技術的低電壓(Low voltage)之超陡峭斜率 (Super-Steep slope)次世代電晶體研究。

    The concept of ferroelectric negative capacitance could be a turning point to break through the state-of-the-art with scaling-down to reach physical limitation. Currently, authority in this field whether Prof. S. Salahuddin in UC Berkeley's or Johannes Müller in Fraunhofer Center and other experts have promoted the concept of a ferroelectric negative capacitance for a period of time.
    Physical limitation of Boltzmann tyranny with 2.3kbT/decade for MOSFET at room temperature restricts the switching slope. Integrated ferroelectric (FE) as dielectric with negative capacitance (NC) effect provides a feasible and synergistic solution for low-power < 0.2 V operation such as wearable devices, bioelectronics, and IoT applications. To demonstrate the concept of negative capacitance(body factor (m) <1), the simulation of NC Effects were used by Landau model to build the theoretical model. However, hysteresis loop would cause phenomenon of hysteresis by thickness of ferroelectric layer. The effect of hyseresis is very important to memory fabrication. In order to applicate CMOS, this effect will be a defect in the devices’ performance. So we should find the optimized thickness of ferroelectric layer with hysteresis-free and lowest SS to achieve steep slope transistor. Ferroelectric negative capacitance have been widely used and proven its validity for NCFET. For reaching ideal state, transport mechanism (n factor) is another parameter to improve. With ultra-thin body, double gate and tunneling FET, it bring out UTB-DG-NCTFET in sub-0.2V operation to achieve low voltage super-steep slope transistors in the development of sub-10nm technology.

    Publication ………………………………………………………………………I 中文摘要………………………………………………………………………II Abstract…………………………………………………………………………III 致謝……………………………………………………………………………IV 目錄……………………………………………………………………………V 圖目錄…………………………………………………………………………VII 表目錄…………………………………………………………………………XII 第一章 緒論………………………………………………………………1 第二章 文獻回顧與論文導讀 2-1負電容元件的可能性與模擬文獻………………………………………5 2-2超薄基板雙閘極穿隧場效電晶體文獻…………………………………17 第三章 運用表面電位計算鐵電效應 3-1 HZO的polarization………………………………………………………20 3-2 Gibb’s free energy和surface potential……………………………………21 3-3 HZO於元件閘極之應用…………………………………………………23 3-4 NC元件之功率消耗………………………………………………………24 3-5 HZO反鐵電性於閘極電晶體結論………………………………………25 第四章 HZO鐵電負電容場效電晶體 4-1 實驗動機…………………………………………………………………26 4-2實做元件製作流程與模擬方法…………………………………………27 4-3 PE圖分析…………………………………………………………………28 4-4 HZO於NCFET實做與模擬之電性對照…………………………………29 4-5 模擬HZO於UTB-DG-NCFET之應用…………………………………33 第五章 超薄基板雙閘極鐵電負電容穿隧場效電晶體元件設計及優化 5-1 實驗動機…………………………………………………………………36 5-2元件模擬方法與設計……………………………………………………38 5-3不同結構對電晶體特性之影響…………………………………………40 5-3-1不同鐵電層厚度對電晶體特性之影響………………………………40 5-3-2不同基板厚度對電晶體特性之影響…………………………………43 5-3-3不同介面層厚度對電晶體特性之影響………………………………46 5-3-4不同基板材料對電晶體特性之影響…………………………………49 5-4 UTB-DG-NCTFET的結果與討論………………………………………50 第六章結論與未來工作 6-1 綜合討論…………………………………………………………………51 6-2 未來工作…………………………………………………………………52 參考文獻……………………………………………………………………54 附錄 …………………………………………………………………………58

    [1] International Technology Roadmap for Semiconductors (ITRS) Roadmap, 2009.
    [2] M. H. Lee, S. T. Chang, T.-H. Wu, and W.-N. Tseng, “Driving Current Enhancement of Strained Ge (110) p-type Tunnel FETs and Anisotropic Effect, ” IEEE Electron Device Letter, vol. 32, no. 10, pp. 1355-1357, 2011.
    [3] K. Joen, W.-Y. Lop, P. Patel, C. Y. Kang, J. Oh, A. Bowonder, C. Park, C. S. Park, C. Smith, P. Majhi, H.-H. Tseng, R. Jammy, T.-J. King Liu, and C. Hu, “Si Tunnel Transistors with a Novel Silicided Source and 46mV/dec Swing, ” in VLSI Symp. Tech. Dig., 2010, pp. 121-122.
    [4] C. Hu, D. Chou, P. Patel, and A. Bowonder, “Green transistor—A VDD scaling path for future low power ICs,” in Proc. Int. Symp. VLSI-TSA, Apr. 2008, pp. 14–15.
    [5] M. H. Lee, J.-C. Lin, and C.-Y. Kao, “Hetero-Tunnel Field-Effect-Transistors with Epitaxially Grown Germanium on Silicon, ” IEEE Trans. on Electron Device, vol. 60, no.7, pp. 2423-2427, 2013.
    [6] G. A. Salvatore, D. Bouvet, and A. M. Ionescu, “Demonstration of Subthrehold Swing Smaller Than 60mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 Gate Stack, ” in IEDM Tech. Dig., pp. 167-170, 2008.
    [7] A. Rusu, G. A. Salvatore, D. Jimenez, and A. M. Ionescu, ‘‘Metal-Ferroelectric-Metal-Oxide-Semiconductor Field Effect Transistor with Sub-60mV/decade Subthreshold Swing and Internal Voltage Amplification,’’ in IEDM Tech. Dig., pp. 395-398, 2010.
    [8] S. Salahuddin, and S. Datta, ‘‘Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?, ’’ in IEDM Tech. Dig., pp. 693-696, 2008.
    [9] A. I. Khan, C. W. Yeung, C. Hu, and S. Salahuddin, “Ferroelectric Negative Capacitance MOSFET: Capacitance Tuning & Antiferroelectric Operation, ” in IEDM Tech. Dig., pp. 255-258, 2011.
    [10] A. Seabaugh, “Tunnel Field-Effect Transistor – Engineer a Better Switch” in “VLSI Technology Beyond 14 nm Node, ” in IEEE IEDM short course, Dec. 4, 2011.
    [11] M. H. Lee, J.-C. Lin, Y.-T. Wei, C.-W. Chen, W.-H. Tu, H.-K. Zhuang, and M. Tang, “Ferroelectric Negative Capacitance Hetero-Tunnel Field-Effect-Transistors with Internal Voltage Amplification, ” in IEDM Tech. Dig., pp. 104-107, 2013.
    [12] S. Salahuddin and S. Datta, “Use of Negative Capacitance to ProvideVoltage Amplification for Low PowerNanoscale Devices, ’’ Nano Lett., Vol. 8, No. 2, pp. 405-410, 2008.
    [13] David Jiménez, Enrique Miranda, and Andrés Godoy, “Analytic Model for the Surface Potential and Drain Current in Negative Capacitance Field-Effect Transistors, ’’ IEEE Trans. on Electron Device, vol. 57, no.10, pp. 2405-2409, 2010.
    [14] A. I. Khan, C. W. Yeung, C. Hu, and S. Salahuddin, “Ferroelectric Negative Capacitance MOSFET: Capacitance Tuning & Antiferroelectric Operation, ” in IEDM Tech. Dig., pp. 255-258, 2011.
    [15] A. I. Khan, D. Bhowmik, P. Yu, S. J. Kim, X. Pan, R. Ramesh and S. Salahuddin, “Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures,’’ Appl. Phys. Lett., Vol. 99, 113501, 2011.
    [16] C. W. Yeung, A. I. Khan, A. Sarker, S. Salahuddin, and C. Hu, “Low Power Negative Capacitance FETs for Future Quantum-Well Body Technology, ’’ in VLSI-TSA, pp. 179-180, 2013.
    [17] M. Kobayashi, and T. Hiramoto, “Device Design Guideline for Steep Slope Ferroelectric FET Using Negative Capacitance in Sub-0.2V Operation: Operation Speed, Material Requirement and Energy Efficiency, ’’ in VLSI Symp. Tech. Dig., 2015, pp. 212-213.
    [18] K. Boucart, and A. M. Ionescu, “Double Gate Tunnel FET with ultrathin silicon body and high-k gate dielectric, ’’ in ESSDERC 2006. Proceeding of the 36th European, pp. 383-386.
    [19] A. Biswas, S. S. Dan, C. L. Royer, W. Grabinski, A. M. Ionescu, “TCAD simulation of SOI TFETs and calibration of non-local band-to-bandtunneling model, ’’ Microelectronic Engineering 98 (2012), pp. 334–337.
    [20] L. D. Landau, and I. M. Khalatnikov, “On the anomalous absorption of sound near a second order phase transition point., ’’ Dokl. Akad. Nauk 1954, 96, 469-472.
    [21] V. C. Lo, “Simulation of thickness effect in thin ferroelectric films using Landau-Khalatnikov theory, ’’ J. Appl. Phys. 2003, 93 (5), 3353-3359.
    [22] W. Zhang, and K. Bhattacharya, “A computational model of ferroelectric domains. Part I: model formulation and domain switching, ’’ Acta Mater. 2005, 53, 185-198.
    [23] J. F. Scott, J. Phys. Condens. Matter, 20, 021001, 2008.
    [24] M. J. Haun, Z. Q. Zhuang, E. Furman, S. J. Jang, and L. E. Cross, "Thermodynamic theory of the lead zirconate-titanate solid solution system, part III: Curie constant and sixth-order polarization interaction dielectric stiffness coefficients," Ferroelectrics 99.1 (1989): pp. 45-54.

    無法下載圖示 本全文未授權公開
    QR CODE