Basic Search / Detailed Display

Author: 戴愉軒
Dai, Yu-Hsuan
Thesis Title: 探討融入教學影片講解數學建構反應題對八年級學生解題表現與學習動機之影響
Exploring the Impact of Integrating Instructional Videos in Mathematics Constructed Response Questions on Problem-solving Performance and Motivation among Eighth-Grade Students
Advisor: 楊凱琳
Yang, Kai-Lin
Committee: 楊凱琳
Yang, Kai-Lin
左台益
Tso, Tai-Yih
鄭英豪
Cheng, Ying-Hao
Approval Date: 2024/06/13
Degree: 碩士
Master
Department: 數學系
Department of Mathematics
Thesis Publication Year: 2024
Academic Year: 112
Language: 中文
Number of pages: 171
Keywords (in Chinese): 數學建構反應題教學影片解題表現學習動機學習感受
Research Methods: 準實驗設計法半結構式訪談法
DOI URL: http://doi.org/10.6345/NTNU202400832
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 69Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 本研究旨在探討教學影片融入數學建構反應題教學對八年級學生解題表現與學習動機的影響。採用準實驗設計,研究對象為八年級學生,分為實驗組(影片教學)與對照組(教師親自講解)。研究結果顯示,實驗組學生在數學解題表現及學習動機上均顯著優於對照組,證實教學影片的融入能有效提升學生的解題表現與學習動機。此外,通過半結構式訪談分析學生的學習感受,發現教學影片作為教師的分身,有效提升學習的便利性與互動性,特別是對自主學習和重複學習提供顯著支持。由半結構是訪談後經主題分析法之結果發現,快組學生認為教學影片有助於提升其問題解決能力;中組學生指出影片增強對數學概念的理解;慢組學生則強調影片提供額外的理解與練習機會。綜合以上研究結果,本研究實證教學影片在促進數學建構反應題解題表現與學習動機的有效性,並為未來教學實踐提供了實證研究基礎。

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 4 第三節 重要名詞釋義 5 第二章 文獻探討 9 第一節 建構反應試題的內涵與類型 9 第二節 國中學生解建構反應試題之困難及其來源 16 第三節 差異化教學模式與相關實徵研究 20 第四節 教學影片融入數學教學之使用與實徵研究 25 第三章 研究方法 29 第一節 研究流程與研究架構 29 第二節 教學設計 31 第三節 研究對象及樣本 40 第四節 研究工具 43 第四章 研究結果 51 第一節 以教學影片講解建構反應試題 51 第二節 教師親自講解建構反應試題 69 第三節 比較教學影片與教師講解兩種教學方式 86 第五章 結論與建議 99 第一節 結論 99 第二節 建議 103 第三節 研究限制 107 參考文獻 108 附錄 112

    古明峰(1998)。數學應用題的解題認知歷程之探討。教育研究資訊,6 卷,3期,p.63~77。
    江信宏、林素卿、謝旻修、林建宇(2022)。臺灣差異化教學研究之文獻分析。成大體育學刊, 54(2), 1-13。
    吳靜吉、程炳林(1992)。 激勵的學習策略量表之修訂。測驗年刊, (39), 59-78.
    吳正新、謝佳叡、黃宇康(2022)。國小六年級生對數學素養導向試題之作答表現探究。 臺灣數學教育期刊,9(2),87–111。
    吳正新、林裕峯、余陳宗、謝佳叡(2020)。108 學年度國中素養導向評量分析報告:數學科。臺北市:臺北市政府教育局。
    胡詩菁、鍾靜(2015)。數學課室中應用建構反應題進行形成性評量之研究。台灣數學教師,36(2),26-18。
    陳建亨、楊凱琳(2021)。題型對學生數學表現水準之影響─ 以相似形為例。Journal of Research in Education Sciences, 66(3)。
    國立臺灣師範大學心理與教育測驗研究發展中心(2013b)。數學科(含非選擇題題型)考試內容。https://cap.rcpet.edu.tw/test_4_4.html
    國立臺灣師範大學心理與教育測驗研究發展中心(2022)。111 年教育會考數學科試題評量目標說明。臺北市:國立臺灣師範大學https://cap.rcpet.edu.tw/PressRelease10808.html
    國立臺灣師範大學心理與教育測驗研究發展中心(2023)。112 年國中教育會考數學科非選擇題題目及評分指引。臺北市:國立臺灣師範大學。https://cap.rcpet.edu.tw/examination.html
    張俊彥(主編)(2018)。國際數學與科學教育成就趨勢調查 2015 國家報告。 臺北市:國立臺灣師範大學科學教育中心。
    教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校:數學領域。臺北市:教育部。
    教育部(2014)。十二年國民基本教育課程綱要總綱。臺北市:教育部。
    楊美玲(2014)。學生數學解題思維探究-數學建構反應解題分析(上),台北市,北市教育局。
    楊凱琳(2020)。數學非選題的讀題、思題與做題。臺北市數學領域教師閱讀理解教學增能研習簡報,臺北市,臺灣。
    教育部國教署(2021)。央團數學月刊第28期—九月號。臺北市:教育部。
    Brookhart, S. M., & Nitko, A. J. (2011). Strategies for constructing assessments of higher order thinking skills. Assessment of Higher Order Thinking Skills, 1, 327-59.
    Brame, C. J. (2017). Effective educational videos: Principles and guidelines for maximizing student learning from video content. CBE—Life Sciences Education.
    Braun, V., & Clarke, V. (2012). Thematic analysis. In H. Cooper, P. M. Camic, D. L.
    Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology, Vol. 2. Research designs: Quantitative, qualitative, neuropsychological, and biological (pp. 57-71). Washington, DC, US: American Psychological Association. doi.10.1037/13620-004
    Boaler, J. (1998). Open and closed mathematics: Student experiences and understandings. Journal for Research in Mathematics Education, 29(1), 41-62.
    Cohen, E. G., & Lotan, R. A. (2014). Designing groupwork: strategies for the heterogeneous classroom third edition. Teachers College Press.
    Ellerton, N. F., & Clements, M. A. (1992). Mathematics in language: A review of language factors in mathematics learning. Journal for Research in Mathematics Education, 23, 434-459.
    Grouws, D. (Ed.). (2006). Handbook of research on mathematics teaching and learning:(A project of the national council of teachers of mathematics). IAP.
    Guo, P. J., Kim, J., & Rubin, R. (2014, March). How video production affects student engagement: An empirical study of MOOC videos. In Proceedings of the first ACM conference on Learning@ scale conference (pp. 41-50).
    Huang, M. C. L., Chou, C. Y., Wu, Y. T., Shih, J. L., Yeh, C. Y., Lao, A. C., ... & Chan, T.W. (2020). Interest-driven video creation for learning mathematics. Journal of Computers in Education, 7, 395-433.
    Hew, K. F., & Lo, C. K. (2020). Comparing video styles and study strategies during video-recorded lectures: Effects on secondary school mathematics students’ preference and learning. Interactive Learning Environments, 28(7), 847-864.
    Hertberg-Davis, H. L., & Brighton, C. M. (2006). Support and sabotage principals’ influence on middle school teachers’ responses to differentiation. Journal of Secondary Gifted Education, 17(2), 90-102.
    Jonsson, A., & Svingby, G. (2007). The use of scoring rubrics: Reliability, validity and educational consequences. Educational research review, 2(2), 130-144.
    Lesh, R. (2007). Problem solving and modeling. Second handbook of research on teaching and learning, 2, 763-804.
    Mayer, R. E. (1992), Thinking, problem solving, cognition. New York: W. H. Freeman.
    Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions?. Educational Psychologist, 32, 1-19.
    Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational psychologist, 38(1), 43-52.
    Moskal, B. M., & Leydens, J. A. (2019). Scoring rubric development: Validity and reliability. Practical assessment, research, and evaluation, 7(1), 10.
    OECD (2023), "PISA 2022 Mathematics Framework", in PISA 2022 Assessment and Analytical Framework, OECD Publishing, Paris, https://doi.org/10.1787/7ea9ee19-en.
    Pólya, G. (1945). How to solve it. Princeton. New Jersey: Princeton University.
    Pape, S. J., & Wang, C. (2003). Middle school children's strategic behavior: Classification and relation to academic achievement and mathematical problem solving. Instructional Science, 31, 419-449.
    Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving: A path analysis. Journal of Educational Psychology, 86(2), 193-203.
    Schoenfeld, A. H. (1985). Mathematical problem solving. Academic Press. New York.
    Shafer, M. C., & Foster, S. (Fall 1997). The changing face of assessment. Principled Practice in Mathematics and Science Education, 1(2), 1–8.
    Sweller, J. (2010). Cognitive load theory: Recent theoretical advances.
    Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10, 251-296.
    Tomlinson, C. A., & McTighe, J. (2006). Integrating differentiated instruction and understanding by design: Connecting content and kids. Ascd.
    Tomlinson, C. A. (2014). The differentiated classroom: Responding to the needs of all learners. Association for Supervision and Curriculum Development.
    Tan, C. Y., & Dimmock, C. (2022). The relationships among between-class ability grouping, teaching practices, and mathematics achievement: A large-scale empirical analysis. Educational studies, 48(4), 471-489.
    Tomlinson, C. A. (2003). Fulfilling the promise of the differentiated classroom: Strategies and tools for responsive teaching. Association for Supervision and Curriculum Development.
    Watts‐Taffe, S., Laster, B. P., Broach, L., Marinak, B., McDonald Connor, C., & Walker‐Dalhouse, D. (2012). Differentiated instruction: Making informed teacher decisions. The Reading Teacher, 66(4), 303-314.

    無法下載圖示 Public on Internet date:
    2025/07/01
    QR CODE