研究生: |
倪玉玲 Ni, Yu-Ling |
---|---|
論文名稱: |
探討三環藥物Teroxirone及吲哚基喹嚀藥物抑制人類非小細胞肺癌類幹細胞增生的機制 Mechanisms of Teroxirone and Indolylquinoline Compound That Impair Growth in Cancer Stem-Like Cells of Human Non-Small-Cell-Lung-Cancer |
指導教授: |
方剛
Fang, Kang |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 肺癌 、癌類幹細胞 、teroxirone 、EMMQ 、細胞凋亡 |
英文關鍵詞: | lung cancer, cancer stem-like cells, teroxirone, EMMQ, apoptosis |
DOI URL: | https://doi.org/10.6345/NTNU202204046 |
論文種類: | 學術論文 |
相關次數: | 點閱:198 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先前研究結果顯示三環衍生物teroxirone (1, 3, 5-triazine-2, 4, 6 (1H, 3H, 5H)-tri-one-1, 3, 5-tri-(oxiranylmethyl))及吲哚基喹嚀藥物EMMQ (3-((7-ethyl-1H-indol-3-yl)-methyl)-2-methylquinoline)具有抑制人類非小細胞肺癌生長的效果,雖然它的反應機制是透過細胞凋亡,然而卻因為殘存的癌幹細胞阻礙了藥物的完整活性。所以本論文的主要目的是想透過肺癌類幹細胞的培養模式探討teroxirone及EMMQ是否能夠根除潛在的肺癌幹細胞。首先須建立無血清以及低貼附性的特殊環境培養出肺癌類幹細胞球再進行後續的實驗。利用BrdU螢光染色和soft agar assay發現teroxirone與EMMQ可以抑制球狀細胞的生長、數量以及形成群落的能力。而以內差法計算soft agar assay的結果顯示,肺癌類幹細胞球所需的IC50遠高於貼附性細胞先前於MTT assay結果中所需的IC50,證明肺癌類幹細胞球確實具有較高的抗藥性。次以反轉錄聚合酶連鎖反應、西方墨點法及免疫螢光染色法證實teroxirone和EMMQ抑制肺癌類幹細胞的自我更新能力相關的幹細胞標誌基因,例如Nanog和ALDH1A1等。此外,TUNEL assay和西方墨點法的結果也顯示,teroxirone及EMMQ會誘發球狀細胞產生凋亡,最後以裸鼠皮下注射之腫瘤異種移植模式探討EMMQ之治療效果。根據論文的結論,teroxirone與EMMQ除了可以抑制貼附性肺癌細胞生長,若能適當地提高濃度也可以藉由細胞凋亡清除肺癌幹細胞。
We showed before that teroxirone and EMMQ inhibited the growth of human non-small-cell-lung-cancer cells (NSCLC) and the effects dose- and time-dependent. The apoptotic cell death accounted for cell death. However, the residual drug resistance hampers complete drug activity because of residual stem cells. Cancer stem cells (CSCs) are resistant to chemotherapy treatments, and accentuate disease progression despite therapeutic intervention. The work is aimed to override the drug resistance of teroxirone and EMMQ by targeting their corresponding CSC cells as enriched from the parental cells. To know if the chemical drugs can potentially eradicate lung CSC cells, we have established the spheroids of human NSCLC cells under serum-free condition. Experiments with fluorescence microscopy and soft-agar assay showed that the colony sizes and numbers of spheroids were suppressed after treatment with higher teroxirone and EMMQ concentrations. The formation of spheres, the expression of self-renewal related genes, such as, Nanog and ALDH1A1 stemness markers, were repressed as confirmed by RT-PCR, western blot analysis and immunofluorescence staining. The results proved that the chemical drugs affected the self-renewal ability of the spheroid cells. Furthermore, we demonstrated that higher concentrations of teroxirone and EMMQ caused apoptotic cell death of spheres as confirmed by western blot and TUNEL assay. At last, EMMQ suppressed the growth of H460 spheroid cells in xenograft tumors by exhibiting apoptosis characteristics. As a potential therapeutic agent by restraining cell growth through apoptotic death in spheroids, teroxirone and EMMQ promised an addition to the current list in complete eradication of human lung cancer.
1. Szabo E, Mao JT, Lam S, Reid ME, Keith RL (2013) Chemoprevention of lung cancer: diagnosis and management of lung cancer, 3rd ed: american college of chest physicians evidence-based clinical practice guidelines. Chest 143: e40S-e60S.
2. Samet JM, Avila-Tang E, Boffetta P, Hannan LM, Olivo-Marston S, et al. (2009) Lung cancer in never smokers: clinical epidemiology and environmental risk factors. Clinical Cancer Research 15: 5626-5645.
3. Denholm R, Schüz J, Straif K, Stücker I, Jöckel K-H, et al. (2014) Is previous respiratory disease a risk factor for lung cancer? American Journal of Respiratory and Critical Care Medicine 190: 549-559.
4. Sher T, Dy GK, Adjei AA (2008) Small cell lung cancer. Mayo Clinic Proceedings 83: 355-367.
5. Morgensztern D, Campo MJ, Dahlberg SE, Doebele RC, Garon E, et al. (2015) Molecularly targeted therapies in non-small cell lung cancer annual update 2014. Journal of Thoracic Oncology 10: S1-63.
6. Singh S, Chellappan S (2014) Lung cancer stem cells: molecular features and therapeutic targets. Molecular Aspects of Medicine 0: 50-60.
7. Passegue E, Rafii S, Herlyn M (2009) Cancer stem cells are everywhere. Nature Medicine 15: 23.
8. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nature Reviews Cancer 3: 895-902.
9. Crous AM, Abrahamse H (2013) Lung cancer stem cells and low-intensity laser irradiation: a potential future therapy? Stem Cell Research and Therapy 4: 129.
10. Bhummaphan N, Chanvorachote P (2015) Gigantol suppresses cancer stem cell-like phenotypes in lung cancer cells. Evidence-Based Complementary and Alternative Medicine 2015: 836564.
11. Shenghui H, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annual Review of Cell and Developmental Biology 25: 377-406.
12. Borah A, Raveendran S, Rochani A, Maekawa T, Kumar DS (2015) Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy. Oncogenesis 4: e177.
13. Zoghbi ME, Altenberg GA (2014) ATP binding to two sites is necessary for dimerization of nucleotide-binding domains of ABC proteins. Biochemical and Biophysical Research Communications 443: 97-102.
14. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. The Journal of Experimental Medicine 183: 1797-1806.
15. Li S, Li QIN (2014) Cancer stem cells and tumor metastasis. International Journal of Oncology 44: 1806-1812.
16. Sun FF, Hu YH, Xiong LP, Tu XY, Zhao JH, et al. (2015) Enhanced expression of stem cell markers and drug resistance in sphere-forming non-small cell lung cancer cells. International Journal of Clinical and Experimental Pathology 8: 6287-6300.
17. Eramo A, Haas TL, De Maria R (2010) Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene 29: 4625-4635.
18. Ma Y, Li M, Si J, Xiong Y, Lu F, et al. (2016) Blockade of Notch3 inhibits the stem-like property and is associated with ALDH1A1 and CD44 via autophagy in non-small lung cancer. International Journal of Oncology. 48(6):2349-58.
19. Tomita H, Tanaka K, Tanaka T, Hara A (2016) Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 7: 11018-11032.
20. Yu AQ, Ding Y, Li CL, Yang Y, Yan SR, et al. (2016) TALEN-induced disruption of Nanog expression results in reduced proliferation, invasiveness and migration, increased chemosensitivity and reversal of EMT in HepG2 cells. Oncology Reports 35: 1657-1663.
21. Leung EL, Fiscus RR, Tung JW, Tin VP, Cheng LC, et al. (2010) Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One 5: e14062.
22. Yoo N, Lee HR, Son JM, Kang HB, Lee HG, et al. (2016) Genkwadaphnin promotes leukocyte migration by increasing CD44 expression via PKD1/NF-kappaB signaling pathway. Immunology Letters 173: 69-76.
23. Hong M, Tan HY, Li S, Cheung F, Wang N, et al. (2016) Cancer stem cells: the potential targets of chinese medicines and their active compounds. International Journal of Molecular Sciences 17.
24. Zhang Y, Cabarcas SM, Zheng JI, Sun LEI, Mathews LA, et al. (2016) Cryptotanshinone targets tumor-initiating cells through down-regulation of stemness genes expression. Oncology Letters 11: 3803-3812.
25. Chiasson BJ, Tropepe V, Morshead CM, van der Kooy D (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. The Journal of Neuroscience 19: 4462-4471.
26. Seaberg RM, van der Kooy D (2003) Stem and progenitor cells: the premature desertion of rigorous definitions. Trends in Neurosciences 26: 125-131.
27. Chang K-J, Yang M-H, Zheng J-C, Li B, Nie W (2016) Arsenic trioxide inhibits cancer stem-like cells via down-regulation of Gli1 in lung cancer. American Journal of Translational Research 8: 1133-1143.
28. Wang JP, Lin KH, Liu CY, Yu YC, Wu PT, et al. (2013) Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53. Toxicology and Applied Pharmacology 273: 110-120.
29. Ames MM, Kovach JS, Rubin J (1984) Pharmacological characterization of teroxirone, a triepoxide antitumor agent, in rats, rabbits, and humans. Cancer Research 44: 4151-4156.
30. Neidhart JA, Derocher D, Grever MR, Kraut EH, Malspeis L (1984) Phase I trial of teroxirone. Cancer Treatment Reports 68: 1115-1119.
31. Spreafico F, Atassi G, Filippeschi S, Malfiore C, Noseda S, et al. (1980) A characterization of the activity of alpha-1,3,5-triglycidyl-s-triazinetrione, a novel antineoplastic compound. Cancer Chemotherapy and Pharmacology 5: 103-108.
32. Atassi G, Spreafico F, Dumont P, Nayer P, Klastersky J (1980) Antitumoral effect in mice of a new triepoxyde derivative: 1, 3, 5-triglycidyl-s-triazinetrione (NSC 296934). European Journal of Cancer 16: 1561-1567.
33. Liu CY, Wu PT, Wang JP, Fan PW, Hsieh CH, et al. (2015) An indolylquinoline derivative promotes apoptosis in human lung cancer cells by impairing mitochondrial functions. Apoptosis 20: 1471-1482.
34. Chakrabarti G, Basu A, Manna PP, Mahato SB, Mandal NB, et al. (1999) Indolylquinoline derivatives are cytotoxic to leishmania donovani promastigotes and amastigotes in vitro and are effective in treating murine visceral leishmaniasis. Journal of Antimicrobial Chemotherapy 43: 359-366.
35. Souli E, Machluf M, Morgenstern A, Sabo E, Yannai S (2008) Indole-3-carbinol (I3C) exhibits inhibitory and preventive effects on prostate tumors in mice. Food and Chemical Toxicology 46: 863-870.
36. Palem PP, Kuriakose GC, Jayabaskaran C (2015) An endophytic fungus, talaromyces radicus, isolated from catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS One 10: e0144476.
37. Gholipour MA, Kanavi MR, Ahmadieh H, Aldavood SJ, Nourinia R, et al. (2015) Intravitreal topotecan inhibits laser-induced choroidal neovascularization in a rat model. Journal of Ophthalmic and Vision Research 10: 295-302.
38. Shao J, Xu Z, Peng X, Chen M, Zhu Y, et al. (2016) Gefitinib synergizes with irinotecan to suppress hepatocellular carcinoma via antagonizing Rad51-mediated DNA-repair. PLoS One 11: e0146968.
39. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24: 7455-7464.
40. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, et al. (2004) PI3K/Akt signalling pathway and cancer. Cancer Treatment Reviews 30: 193-204.
41. Yu Z, Zhao G, Li P, Li Y, Zhou G, et al. (2016) Temozolomide in combination with metformin act synergistically to inhibit proliferation and expansion of glioma stem-like cells. Oncology Letters 11: 2792-2800.
42. Amaral JD, Xavier JM, Steer CJ, Rodrigues CM (2010) The role of p53 in apoptosis. Discovery Medicine 9: 145-152.
43. Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20: 1803-1815.
44. DiPietrantonio AM, Hsieh T, Wu JM (1999) Activation of caspase 3 in HL-60 cells exposed to hydrogen peroxide. Biochemical and Biophysical Research Communications 255: 477-482.
45. Zhang K, Waxman DJ (2010) PC3 prostate tumor-initiating cells with molecular profile FAM65Bhigh/MFI2low/LEF1low increase tumor angiogenesis. Molecular Cancer 9: 319.
46. Ihara T, Yamamoto T, Sugamata M, Okumura H, Ueno Y (1998) The process of ultrastructural changes from nuclei to apoptotic body. MedSci Entry for Virchows Archiv 433: 443-447.
47. Zhao C, Setrerrahmane S, Xu H (2015) Enrichment and characterization of cancer stem cells from a human non-small cell lung cancer cell line. Oncology Reports 34: 2126-2132.
48. Gaelzer MM, Coelho BP, de Quadros AH, Hoppe JB, Terra SR, et al. (2016) Phosphatidylinositol 3-kinase/AKT pathway inhibition by doxazosin promotes glioblastoma cells death, upregulation of p53 and triggers low neurotoxicity. PLoS One 11: e0154612.
49. Lindahl T, Modrich P, Sancar A (2016) The 2015 nobel prize in chemistry the discovery of essential mechanisms that repair DNA damage. Journal of the Association of Genetic Technologists 42: 37-41.
50. Shivji MK, Podust VN, Hubscher U, Wood RD (1995) Nucleotide excision repair DNA synthesis by DNA polymerase epsilon in the presence of PCNA, RFC, and RPA. Biochemistry 34: 5011-5017.
51. Kurki P, Vanderlaan M, Dolbeare F, Gray J, Tan EM (1986) Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle. Experimental Cell Research 166: 209-219.
52. Bravo R, Frank R, Blundell PA, Macdonald-Bravo H (1987) Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta. Nature 326: 515-517.
53. 李宜燕,邱士華 (2009) 癌症幹細胞的研究進展。生物醫學 第二卷第一期 22-27
54. 巫佩岑 (2014) 鑑定具有清除肺癌幹細胞的藥物。國立台灣師範大學碩士論文。
55. 范柏緯 (2015) 建立人類非小型細胞肺癌之癌幹細胞對藥物的篩選平台。國立台灣師範大學碩士論文。
56. 陳建合 (2016) 開發人類肝癌類幹細胞凋亡之中草藥。國立台灣 師範大學碩士論文。