簡易檢索 / 詳目顯示

研究生: 黃智盈
Huang, Chih-Ying
論文名稱: 利用混合陽離子方法提升二維錫鈣鈦礦穩定性
Improving Stability of Two-Dimensional Tin Halide Perovskite Crystals through Mixed Cation Method
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 46
中文關鍵詞: 混合陽離子鈣鈦礦無鉛鈣鈦礦二維Ruddlesden-Popper鈣鈦礦
英文關鍵詞: mixed cation, lead-free, two-dimensional Ruddlesden-Popper perovskite
DOI URL: http://doi.org/10.6345/NTNU202000877
論文種類: 學術論文
相關次數: 點閱:195下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機-無機鈣鈦礦憑著其優異的光電性質在近十年受到各界大量的關注,但是常見的鈣鈦礦材料中含有鉛,存在環境汙染與毒性之風險,尋找替代元素即成為重要的研究議題。然而,錫鈣鈦礦具有高吸收係數與低能隙的優點而成為相當好的替代元素,不幸的是錫鈣鈦礦穩定性極差容易受環境影響而氧化,因此本研究專注於錫鈣鈦礦的穩定性提升。
    本篇成功將合成二維錫鈣鈦礦晶體BA2FASn2I7 (n = 2),再利用混合陽離子方法將甲脒與銫共同摻入鈣鈦礦製成BA2FA0.5Cs0.5Sn2I7 (n = 2),藉由粉末X光繞射鑑定結構得知銫確實有進入錫鈣鈦礦晶格且具有清楚的等間距繞射峰,測量吸收光譜得知能隙僅有略微變化依序為1.74 eV和1.72 eV,又發現BA2FASn2I7經過雷射激發後會出現錫鈣鈦礦主體以外的放射光,而在BA2FA0.5Cs0.5Sn2I7沒有發現此現象,僅有螢光強度的衰退,證明混合陽離子確實能夠抑制其他晶相的產生提升錫鈣鈦礦穩定性。最後將二維錫鈣鈦礦晶體置於大氣中觀察其結構變化,發現BA2FA0.5Cs0.5Sn2I7經過12小時候仍維持其二維層狀結構,表示混合陽離子的二維錫鈣鈦礦結構比BA2FASn2I7穩定。
    未來可嘗試合成更高層數的混合陽離子二維錫鈣鈦礦,應用於光伏元件,將有機會提升效率以及穩定性。

    Organic-inorganic perovskites have received a lot of attention from different field in the past decade due to their excellent photoelectric properties. However, perovskite materials usually contain lead element, which has the risk of environmental pollution and toxicity. Finding alternative elements has become an important research issue. Tin halide perovskites have the advantages of high absorption coefficient and low energy gap and become a good substitute candidate. Unfortunately, the stability of tin halide perovskite is very limited and it is easily oxidized by ambient.
    In this article, we successfully synthesized two-dimensional tin halide perovskite crystals BA2FASn2I7 (n = 2), and then mixed formamidine and cesium into perovskite to form BA2FA0.5Cs0.5Sn2I7 (n = 2) by mixed cation method. The powder X-ray diffraction revealed that cesium did induce to the tin halide perovskite lattice and had clear repeating unit diffraction pattern. The band gap is 1.74 eV and 1.72 eV, respectively. After laser excitation, BA2FASn2I7 will emit the unknown photoluminescence, which is not same as tin perovskites’ original emission. This phenomenon has not been found in BA2FA0.5Cs0.5Sn2I7 crystals, also proves that mixed cations indeed suppress the production of other crystal phases. The two-dimensional tin halide perovskite crystals were placed in the ambient to observe the structural changes. It was found that BA2FA0.5Cs0.5Sn2I7 still maintained its layered structure after 12 hours, indicating that the mixed cation method can stabilize the structure.
    In the future, a higher layered of mixed cation two-dimensional tin halide perovskite have the potential to improve photovoltaic devices efficiency and stability.

    謝辭 I 摘要 II Abstract III 圖次 VI 第1章 緒論 1 1-1 前言 1 1-2 鈣鈦礦材料多樣性 2 1-2-1 鈣鈦礦晶體結構與基本性質 2 1-2-2 維度多樣性 4 1-2-3 組成多樣性 8 1-3 無毒鈣鈦礦 10 1-3-1 非等價金屬鈣鈦礦 10 1-3-2 等價金屬鈣鈦礦 12 1-4 研究動機與目的 13 第2章 文獻回顧 14 2-1 三維錫鈣鈦礦 14 2-1-1 基本結構與光物理性質 14 2-1-2 不同A位陽離子的錫鈣鈦礦 15 2-2 混合陽離子錫鈣鈦礦 16 2-3 二維Ruddlesden-Popper錫鈣鈦礦 19 2-4 二維錫鈣鈦礦材料應用 22 第3章 儀器設備 23 3-1 粉末X光繞射儀(Powder X-ray Diffraction) 23 3-2 光致發光光譜儀(Photoluminescence Spectroscopy) 24 3-3 時間解析光譜(Time-Resolved Photoluminescence) 24 3-4 旋轉塗佈機(Spin Coater) 25 3-5 恆溫水槽(Constant Temperature Water Bath) 25 3-6 紫外光臭氧處理機(UV Ozone Cleaner) 25 第4章 實驗藥品與步驟 26 4-1 實驗藥品 26 4-2 實驗步驟 27 4-2-1 合成BA2FASnI7晶體 27 4-2-2 合成BA2FA0.9Cs0.1Sn2I7晶體 28 4-2-3 BA2FA1-xCsxSn2I7反應物比例 29 4-2-4 二維錫鈣鈦礦薄膜製作 30 第5章 結果與討論 31 5-1 二維有機-無機錫鈣鈦礦晶體 31 5-1-1 不同A位陽離子之結構分析 31 5-1-2 不同A位陽離子之光學性質 32 5-2 二維混合陽離子錫鈣鈦礦 33 5-2-1 混合比例變化對晶體結構之影響 33 5-2-2 混合比例變化對光學性質之影響 34 5-2-3 光穩定性探討 36 5-2-4 結構穩定性探討 38 第6章 結論與未來展望 40 第7章 參考文獻 41

    1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
    2. Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K., Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chemistry of Materials 2016, 28 (1), 284-292.
    3. Bokdam, M.; Sander, T.; Stroppa, A.; Picozzi, S.; Sarma, D. D.; Franchini, C.; Kresse, G., Role of Polar Phonons in the Photo Excited State of Metal Halide Perovskites. Scientific Reports 2016, 6 (1), 28618.
    4. Huang, W.; Sadhu, S.; Ptasinska, S., Heat- and Gas-Induced Transformation in CH3NH3PbI3 Perovskites and Its Effect on the Efficiency of Solar Cells. Chemistry of Materials 2017, 29 (19), 8478-8485.
    5. Lin, H.; Zhou, C.; Tian, Y.; Siegrist, T.; Ma, B., Low-Dimensional Organometal Halide Perovskites. ACS Energy Letters 2018, 3 (1), 54-62.
    6. Yuan, Z.; Shu, Y.; Xin, Y.; Ma, B., Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Chemical Communications 2016, 52 (20), 3887-3890.
    7. Yuan, Z.; Zhou, C.; Messier, J.; Tian, Y.; Shu, Y.; Wang, J.; Xin, Y.; Ma, B., A Microscale Perovskite as Single Component Broadband Phosphor for Downconversion White-Light-Emitting Devices. Advanced Optical Materials 2016, 4 (12), 2009-2015.
    8. Yuan, Z.; Zhou, C.; Tian, Y.; Shu, Y.; Messier, J.; Wang, J. C.; van de Burgt, L. J.; Kountouriotis, K.; Xin, Y.; Holt, E.; Schanze, K.; Clark, R.; Siegrist, T.; Ma, B., One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nature Communications 2017, 8 (1), 14051.
    9. Zhou, C.; Lin, H.; Tian, Y.; Yuan, Z.; Clark, R.; Chen, B.; van de Burgt, L. J.; Wang, J. C.; Zhou, Y.; Hanson, K.; Meisner, Q. J.; Neu, J.; Besara, T.; Siegrist, T.; Lambers, E.; Djurovich, P.; Ma, B., Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chemical Science 2018, 9 (3), 586-593.
    10. Huang, P.; Kazim, S.; Wang, M.; Ahmad, S., Toward Phase Stability: Dion–Jacobson Layered Perovskite for Solar Cells. ACS Energy Letters 2019, 4 (12), 2960-2974.
    11. Pedesseau, L.; Sapori, D.; Traore, B.; Robles, R.; Fang, H.-H.; Loi, M. A.; Tsai, H.; Nie, W.; Blancon, J.-C.; Neukirch, A.; Tretiak, S.; Mohite, A. D.; Katan, C.; Even, J.; Kepenekian, M., Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors. ACS Nano 2016, 10 (11), 9776-9786.
    12. Quan, L. N.; Yuan, M.; Comin, R.; Voznyy, O.; Beauregard, E. M.; Hoogland, S.; Buin, A.; Kirmani, A. R.; Zhao, K.; Amassian, A.; Kim, D. H.; Sargent, E. H., Ligand-Stabilized Reduced-Dimensionality Perovskites. Journal of the American Chemical Society 2016, 138 (8), 2649-2655.
    13. Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J., Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3; single crystals. Science 2015, 347 (6225), 967.
    14. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 2014, 7 (3), 982-988.
    15. Kulkarni, S. A.; Baikie, T.; Boix, P. P.; Yantara, N.; Mathews, N.; Mhaisalkar, S., Band-gap tuning of lead halide perovskites using a sequential deposition process. Journal of Materials Chemistry A 2014, 2 (24), 9221-9225.
    16. Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F., First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry C 2013, 117 (27), 13902-13913.
    17. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters 2013, 13 (4), 1764-1769.
    18. Krishnamoorthy, T.; Ding, H.; Yan, C.; Leong, W. L.; Baikie, T.; Zhang, Z.; Sherburne, M.; Li, S.; Asta, M.; Mathews, N.; Mhaisalkar, S. G., Lead-free germanium iodide perovskite materials for photovoltaic applications. Journal of Materials Chemistry A 2015, 3 (47), 23829-23832.
    19. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics 2014, 8 (6), 489-494.
    20. Jesper Jacobsson, T.; Correa-Baena, J.-P.; Pazoki, M.; Saliba, M.; Schenk, K.; Grätzel, M.; Hagfeldt, A., Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy & Environmental Science 2016, 9 (5), 1706-1724.
    21. Shirayama, M.; Kadowaki, H.; Miyadera, T.; Sugita, T.; Tamakoshi, M.; Kato, M.; Fujiseki, T.; Murata, D.; Hara, S.; Murakami, T. N.; Fujimoto, S.; Chikamatsu, M.; Fujiwara, H., Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH3NH3PbI3. Physical Review Applied 2016, 5 (1), 014012.
    22. Xiao, Z.; Song, Z.; Yan, Y., From Lead Halide Perovskites to Lead-Free Metal Halide Perovskites and Perovskite Derivatives. Advanced Materials 2019, 31 (47), 1803792.
    23. Hong, F.; Saparov, B.; Meng, W.; Xiao, Z.; Mitzi, D. B.; Yan, Y., Viability of Lead-Free Perovskites with Mixed Chalcogen and Halogen Anions for Photovoltaic Applications. The Journal of Physical Chemistry C 2016, 120 (12), 6435-6441.
    24. Sun, Y.-Y.; Shi, J.; Lian, J.; Gao, W.; Agiorgousis, M. L.; Zhang, P.; Zhang, S., Discovering lead-free perovskite solar materials with a split-anion approach. Nanoscale 2016, 8 (12), 6284-6289.
    25. Nie, R.; Mehta, A.; Park, B.-w.; Kwon, H.-W.; Im, J.; Seok, S. I., Mixed Sulfur and Iodide-Based Lead-Free Perovskite Solar Cells. Journal of the American Chemical Society 2018, 140 (3), 872-875.
    26. Giustino, F.; Snaith, H. J., Toward Lead-Free Perovskite Solar Cells. ACS Energy Letters 2016, 1 (6), 1233-1240.
    27. Wei, F.; Deng, Z.; Sun, S.; Xie, F.; Kieslich, G.; Evans, D. M.; Carpenter, M. A.; Bristowe, P. D.; Cheetham, A. K., The synthesis, structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA)2KBiCl6 (MA = methylammonium). Materials Horizons 2016, 3 (4), 328-332.
    28. Zhao, S.; Yamamoto, K.; Iikubo, S.; Hayase, S.; Ma, T., First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I). Journal of Physics and Chemistry of Solids 2018, 117, 117-121.
    29. Deng, Z.; Wei, F.; Brivio, F.; Wu, Y.; Sun, S.; Bristowe, P. D.; Cheetham, A. K., Synthesis and Characterization of the Rare-Earth Hybrid Double Perovskites: (CH3NH3)2KGdCl6 and (CH3NH3)2KYCl6. The Journal of Physical Chemistry Letters 2017, 8 (20), 5015-5020.
    30. Volonakis, G.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Snaith, H. J.; Giustino, F., Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. The Journal of Physical Chemistry Letters 2016, 7 (7), 1254-1259.
    31. McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M., Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors. Chemistry of Materials 2016, 28 (5), 1348-1354.
    32. Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I., A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. Journal of the American Chemical Society 2016, 138 (7), 2138-2141.
    33. Volonakis, G.; Haghighirad, A. A.; Milot, R. L.; Sio, W. H.; Filip, M. R.; Wenger, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J.; Giustino, F., Cs2InAgCl6: A New Lead-Free Halide Double Perovskite with Direct Band Gap. The Journal of Physical Chemistry Letters 2017, 8 (4), 772-778.
    34. Stoumpos, C. C.; Frazer, L.; Clark, D. J.; Kim, Y. S.; Rhim, S. H.; Freeman, A. J.; Ketterson, J. B.; Jang, J. I.; Kanatzidis, M. G., Hybrid Germanium Iodide Perovskite Semiconductors: Active Lone Pairs, Structural Distortions, Direct and Indirect Energy Gaps, and Strong Nonlinear Optical Properties. Journal of the American Chemical Society 2015, 137 (21), 6804-6819.
    35. Kopacic, I.; Friesenbichler, B.; Hoefler, S. F.; Kunert, B.; Plank, H.; Rath, T.; Trimmel, G., Enhanced Performance of Germanium Halide Perovskite Solar Cells through Compositional Engineering. ACS Applied Energy Materials 2018, 1 (2), 343-347.
    36. Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; Petrozza, A.; Herz, L. M.; Snaith, H. J., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science 2014, 7 (9), 3061-3068.
    37. Xu, P.; Chen, S.; Xiang, H.-J.; Gong, X.-G.; Wei, S.-H., Influence of Defects and Synthesis Conditions on the Photovoltaic Performance of Perovskite Semiconductor CsSnI3. Chemistry of Materials 2014, 26 (20), 6068-6072.
    38. Umari, P.; Mosconi, E.; De Angelis, F., Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications. Scientific Reports 2014, 4 (1), 4467.
    39. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G., Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorganic Chemistry 2013, 52 (15), 9019-9038.
    40. Ke, W.; Kanatzidis, M. G., Prospects for low-toxicity lead-free perovskite solar cells. Nature Communications 2019, 10 (1), 965.
    41. Chiarella, F.; Zappettini, A.; Licci, F.; Borriello, I.; Cantele, G.; Ninno, D.; Cassinese, A.; Vaglio, R., Combined experimental and theoretical investigation of optical, structural, and electronic properties of CH3NH3SnX3 thin films (X=Cl, Br). Physical Review B 2008, 77 (4), 045129.
    42. Lee, J.-W.; Seol, D.-J.; Cho, A.-N.; Park, N.-G., High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3. Advanced Materials 2014, 26 (29), 4991-4998.
    43. Koh, T. M.; Krishnamoorthy, T.; Yantara, N.; Shi, C.; Leong, W. L.; Boix, P. P.; Grimsdale, A. C.; Mhaisalkar, S. G.; Mathews, N., Formamidinium tin-based perovskite with low Eg for photovoltaic applications. Journal of Materials Chemistry A 2015, 3 (29), 14996-15000.
    44. Chung, I.; Song, J.-H.; Im, J.; Androulakis, J.; Malliakas, C. D.; Li, H.; Freeman, A. J.; Kenney, J. T.; Kanatzidis, M. G., CsSnI3: Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions. Journal of the American Chemical Society 2012, 134 (20), 8579-8587.
    45. Pellet, N.; Gao, P.; Gregori, G.; Yang, T.-Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M., Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angewandte Chemie International Edition 2014, 53 (12), 3151-3157.
    46. Liao, W.; Zhao, D.; Yu, Y.; Shrestha, N.; Ghimire, K.; Grice, C. R.; Wang, C.; Xiao, Y.; Cimaroli, A. J.; Ellingson, R. J.; Podraza, N. J.; Zhu, K.; Xiong, R.-G.; Yan, Y., Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. Journal of the American Chemical Society 2016, 138 (38), 12360-12363.
    47. Zhao, Z.; Gu, F.; Li, Y.; Sun, W.; Ye, S.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C., Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%. Advanced Science 2017, 4 (11), 1700204.
    48. Jokar, E.; Chien, C.-H.; Tsai, C.-M.; Fathi, A.; Diau, E. W.-G., Robust Tin-Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%. Advanced Materials 2019, 31 (2), 1804835.
    49. Gao, W.; Ran, C.; Li, J.; Dong, H.; Jiao, B.; Zhang, L.; Lan, X.; Hou, X.; Wu, Z., Robust Stability of Efficient Lead-Free Formamidinium Tin Iodide Perovskite Solar Cells Realized by Structural Regulation. The Journal of Physical Chemistry Letters 2018, 9 (24), 6999-7006.
    50. Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M., Conducting tin halides with a layered organic-based perovskite structure. Nature 1994, 369 (6480), 467-469.
    51. Park, I.-H.; Chu, L.; Leng, K.; Choy, Y. F.; Liu, W.; Abdelwahab, I.; Zhu, Z.; Ma, Z.; Chen, W.; Xu, Q.-H.; Eda, G.; Loh, K. P., Highly Stable Two-Dimensional Tin(II) Iodide Hybrid Organic–Inorganic Perovskite Based on Stilbene Derivative. Advanced Functional Materials 2019, 29 (39), 1904810.
    52. Cao, D. H.; Stoumpos, C. C.; Yokoyama, T.; Logsdon, J. L.; Song, T.-B.; Farha, O. K.; Wasielewski, M. R.; Hupp, J. T.; Kanatzidis, M. G., Thin Films and Solar Cells Based on Semiconducting Two-Dimensional Ruddlesden–Popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 Perovskites. ACS Energy Letters 2017, 2 (5), 982-990.
    53. Diau, E. W.-G.; Jokar, E.; Rameez, M., Strategies To Improve Performance and Stability for Tin-Based Perovskite Solar Cells. ACS Energy Letters 2019, 4 (8), 1930-1937.
    54. Lanzetta, L.; Marin-Beloqui, J. M.; Sanchez-Molina, I.; Ding, D.; Haque, S. A., Two-Dimensional Organic Tin Halide Perovskites with Tunable Visible Emission and Their Use in Light-Emitting Devices. ACS Energy Letters 2017, 2 (7), 1662-1668.
    55. Thrithamarassery Gangadharan, D.; Ma, D., Searching for stability at lower dimensions: current trends and future prospects of layered perovskite solar cells. Energy & Environmental Science 2019, 12 (10), 2860-2889.
    56. Prasanna, R.; Gold-Parker, A.; Leijtens, T.; Conings, B.; Babayigit, A.; Boyen, H.-G.; Toney, M. F.; McGehee, M. D., Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. Journal of the American Chemical Society 2017, 139 (32), 11117-11124.

    下載圖示
    QR CODE