研究生: |
陳詩云 Chen, Shih-Yun |
---|---|
論文名稱: |
脂肪酶催化果醣脂肪酸酯的合成及應用 Lipase-catalyzed synthesis and application of fructose fatty acid esters |
指導教授: |
李冠群
Lee, Guan-Chiun 鄭劍廷 Chien, Chiang-Ting |
口試委員: |
李冠群
Lee, Guan-Chiun 鄭劍廷 Chien, Chiang-Ting 徐世平 Hsu, Shih Ping |
口試日期: | 2022/07/14 |
學位類別: |
碩士 Master |
系所名稱: |
生技醫藥產業碩士學位學程 Graduate Program of Biotechnology and Pharmaceutical Industries |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 果糖 、果糖酯 、脂肪酶 、轉酯化反應 、抗內毒素 、抗氧化劑 、敗血症 |
英文關鍵詞: | fructose, fructose ester, lipase, transesterification, anti-endotoxin, anti-oxidant, septicemia |
研究方法: | 實驗設計法 、 文獻探討 、 實驗研究 、 資料分析 |
DOI URL: | http://doi.org/10.6345/NTNU202201067 |
論文種類: | 學術論文 |
相關次數: | 點閱:198 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脂肪酸糖酯是無毒、無味、無刺激性的界面活性劑。它們可以由再生資源生產,並且可以完全被生物降解。脂肪酸糖酯的應用已擴展到許多領域,包括製藥、化妝品、洗滌劑和食品工業。果糖是一種存在許多植物中的單糖酮醣,它通常與葡萄糖結合形成雙醣蔗糖。過去,本實驗室發現果糖具有抗內毒素和抗氧化的功能,這開啟了對果糖新的潛在功效和應用的研究。為了增加對內毒素的親和力,應增加果糖的疏水性。在本研究中,我們利用市售的固定化脂肪酶Novozymes 435催化脂肪酸酯和果糖之間的轉酯化反應,從而生成果糖酯。藉由MPLC和HPLC分析可獲得果糖轉化產率(69.2%)和各個果糖酯的產率(單丙酸果糖酯-1,即FMP1為23.4%、單丙酸果糖酯-2,即FMP2為21.6%、雙丙酸果糖酯,即FDP為29.6%、單月桂酸果糖酯,即FML2為24.2%)。這些果糖酯吸附內毒素和清除自由基的能力也已經透過生化分析進行。除此之外,在活體試驗中,我們也利用內毒素誘導Wistar雌性大鼠導致敗血症之模型,觀察果糖酯是否能保護模式老鼠,減輕因內毒素而引起的症狀,包括對組織血流量變化與損傷影響,此外也利用西方墨點法(western blotting)去進一步的觀察內毒素增加PARP、4HNE及caspase 3等細胞凋亡相關蛋白的變化。而果糖酯可以降低細胞凋亡蛋白的表現,證明果糖酯的保護效應。因此,本研究建立了果糖酯的酶合成法以用於工業應用,開發果糖酯的新型生化活性以用於醫藥、醫療器材和保健食品工業。
Fatty acid sugar esters are non-toxic, odorless, non-irritating surfactants. They can be produced from renewable resources and are fully biodegradable. Their applications have been extended in many areas including the pharmaceutical, cosmetic, detergent and food industries. Fructose is a simple ketonic monosaccharide found in many plants, where it is often bonded to glucose to form the disaccharide sucrose. Previously, our group has found that fructose can be an anti-endotoxin and anti-oxidant agent, and this opens the investigation on the novel potential efficacy and the application of fructose. In order to increase the affinity toward endotoxin, the hydrophobicity of fructose should be increased. In this study, Novozymes 435, a commercial immobilized lipase, was used to catalyze the transesterification between fatty acid ester and fructose to produce fructose esters. The fructose conversion rate and the individual fructose esters yields have been analyzed by MPLC and HPLC. The endotoxin and free radical removal capacity of these synthesized fructose esters have also been carried out by biochemical assays. In addition, in in vivo experiments, to determine whether fructose esters have protective effects, we treated Wistar female rats with various fructose esters before inducing septicemia with endotoxin. Flow rate change of blood stream and tissue damage level will be analyzed. Western blotting is also be performed to observe the effects on the cell apoptosis related proteins including PARP, 4HNE and caspase 3. Therefore, the results of this study are set up an enzymatic production process of fructose esters for the industrial application, and exploit the novel biochemical activity of fructose esters for the applications in medicine, medical devices and health food industries.
Arcos, J.A., Bernabé, M., and Otero, C. (1998a). Different strategies for selective monoacylation of hexoaldoses in acetone. Journal of Surfactants and Detergents 1, 345-352.
Arcos, J.A., Bernabé, M., and Otero, C. (1998b). Quantitative enzymatic production of 1,6-diacyl fructofuranoses. Enzyme and Microbial Technology 22, 27-35.
Cohen, J.R. (2002). The Ethics of Respect in Negotiation. Negotiation Journal 18, 115-120.
Coulon, D., Girardin, M., Engasser, J.M., and Ghoul, M. (1997). Investigation of keys parameters of fructose oleate enzymatic synthesis catalyzed by an immobilized lipase. Industrial Crops and Products 6, 375-381.
Coulon, D., Ismail, A., Girardin, M., Rovel, B., and Ghoul, M. (1996). Effect of different biochemical parameters on the enzymatic synthesis of fructose oleate. Journal of Biotechnology 51, 115-121.
Dandekar, P., and Patravale, V. (2009). Enzymatic synthesis of fructose ester from Mango Kernel Fat. Indian Journal of Chemical Technology 16, 317-321.
Ferrer, M., Soliveri, J., Plou, F., López-Cortés, N., Reyes-Duarte, D., Christensen, M., Copa-Patiño, J., and Ballesteros, A. (2005). Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties. Enzyme and Microbial Technology 36, 391-398.
Freedman, B., Butterfield, R.O., and Pryde, E.H. (1986). Transesterification kinetics of soybean oil 1. Journal of the American Oil Chemists’ Society 63, 1375-1380.
Guauque, P., Foresti, L., and Ferreira, M. (2014). CLEAs of Candida antarctica lipase B (CALB) with a bovine serum albumin (BSA) cofeeder core. Study of their catalytic activity. Biochemical Engineering Journal 90.
Haberbeck, L.U., Alberto da Silva Riehl, C., de Cássia Martins Salomão, B., and Falcão de Aragão, G.M. (2012). Bacillus coagulans spore inactivation through the application of oregano essential oil and heat. LWT - Food Science and Technology 46, 267-273.
Hidayat, C., Fitria, K., Supriyanto, and Hastuti, P. (2016). Enzymatic Synthesis of Bio-Surfactant Fructose Oleic Ester Using Immobilized Lipase on Modified Hydrophobic Matrix in Fluidized Bed Reactor. Agriculture and Agricultural Science Procedia 9, 353-362.
Jin, Z., Liang, S., Zhang, X., Han, S., Ren, C., Lin, Y., and Zheng, S. (2013). Synthesisof fructose laurate esters catalyzed by a CALB-displaying Pichia pastoris whole-cell biocatalyst in a non-aqueous system. Biotechnology and Bioprocess Engineering 18, 365-374.
Karlová, T., Polakova, L., Šmidrkal, J., and Filip, V. (2010). Antimicrobial Effects of Fatty Acid Fructose Esters. Czech Journal of Food Sciences 28, 146-149.
Kobayashi, T. (2011). Lipase-catalyzed syntheses of sugar esters in non-aqueous media. Biotechnol Lett 33, 1911-1919.
Koga, T., Hamada, S., Murakawa, S., and Endo, A. (1982). Effect of a glucosyltransferase inhibitor on glucan synthesis and cellular adherence of Streptococcus mutans. Infect Immun 38, 882-886.
Lee, K.P., and Kim, H.K. (2016). Antibacterial Effect of Fructose Laurate Synthesized by Candida antarctica B Lipase-Mediated Transesterification. J Microbiol Biotechnol 26, 1579-1585.
Lee, S.M., Sandhu, G., and Walsh, M.K. (2017). Growth inhibitory properties of lactose fatty acid esters. Saudi Journal of Biological Sciences24, 1483-1488.
Li, L., Ji, F., Wang, J., Li, Y., and Bao, Y. (2015). Esterification degree of fructose laurate exerted by Candida antarctica lipase B in organic solvents. Enzyme and Microbial Technology 69, 46-53.
Mohammed Gumel, A., Annuar, M.S., Heidelberg, T., and Chisti, Y. (2011). Lipase mediated synthesis of sugar fatty acid esters. Process Biochemistry 46, 2079-2090.
Neta, N.S., Peres, A.M., Teixeira, J.A., and Rodrigues, L.R. (2011). Maximization of fructose esters synthesis by response surface methodology. New Biotechnology 28, 349-355.
Neta, N.S., Teixeira, J.A., and Rodrigues, L.R. (2015). Sugar ester surfactants: enzymatic synthesis and applications in food industry. Critical Reviews in Food Science and Nutrition 55, 595-610.
Ng, T.M., and Schaffner, D.W. (1997). Mathematical Models for the Effects of pH, Temperature, and Sodium Chloride on the Growth of Bacillus stearothermophilus in Salty Carrots. Applied and Environmental Microbiology 63, 1237-1243.
Opal, S.M. (2010). Endotoxins and other sepsis triggers. Contributions to Nephrology 167, 14-24.
Otera, J. (1993). Transesterification. Chemical Reviews 93, 1449-1470.
Rittig, M.G., Kaufmann, A., Robins, A., Shaw, B., Sprenger, H., Gemsa, D., Foulongne, V., Rouot, B., and Dornand, J. (2003). Smooth and rough lipopolysaccharide phenotypes of Brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. Journal of Leukocyte Biology 74, 1045-1055.
Šabeder, S., Habulin, M., and Knez, Ž. (2006). Lipase-catalyzed synthesis of fatty acid fructose esters. Journal of Food Engineering 77, 880-886.
Scheckermann, C., Schlotterbeck, A., Schmidt, M., Wray, V., and Lang, S. (1995). Enzymatic monoacylation of fructose by two procedures. Enzyme and Microbial Technology 17, 157-162.
Schlotterbeck, A., Lang, S., Wray, V., and Wagner, F. (1993). Lipase-catalyzed monoacylation of fructose. Biotechnology Letters 15, 61-64.
Schwab, A.W., Bagby, M.O., and Freedman, B. (1987). Preparation and properties of diesel fuels from vegetable oils. Fuel 66, 1372-1378.
Spiliotis, N., Voutsas, E., Magoulas, K., and Tassios, D. (2000). Recovery of fructose laurate produced through enzymatic esterification. Separation and Purification Technology 19, 229-236.
Sutili, F.K., Ruela, H.S., Nogueira, D.D.O., Leal, I.C.R., Miranda, L.S.M., and De Souza, R.O.M.A. (2015). Enhanced production of fructose ester by biocatalyzed continuous flow process. Sustainable Chemical Processes 3.
Taskinen, M.R., Packard, C.J., and Boren, J. (2019). Dietary Fructose and the Metabolic Syndrome. Nutrients 11.
Tsujimoto, H., Gotoh, N., and Nishino, T. (1999). Diffusion of macrolide antibiotics through the outer membrane of Moraxella catarrhalis. Journal of Infection and Chemotherapy 5, 196-200.
Tukel, S., Sahin, P.B., and Yildirim, D. (2013). Optimization of lipase-catalyzed synthesis of fructose stearate using response surface methodology. Artif Cells Nanomed Biotechnol 41, 344-351.
Watanabe, T., Katayama, S., Matsubara, M., Honda, Y., and Kuwahara, M. (2000). Antibacterial Carbohydrate Monoesters Suppressing Cell Growth of Streptococcus mutans in the Presence of Sucrose. Current Microbiology 41, 210-213.
Xin, L. (2014). Antimicrobial structure-efficacy relationship of sugar fatty acid esters. Journal of Chemical and Pharmaceutical Research 6, 944-946.