研究生: |
顏啟哲 YEN, CHI-CHE |
---|---|
論文名稱: |
等量公理概念層次工具之開發 Development of Hierarchical Tools of Property of Equality |
指導教授: |
譚克平
Tam, Hak-Ping |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 等量公理 、相等概念 、等量公理基本理解 、等量公理交叉應用 、等量公理概念層次 |
英文關鍵詞: | Property of Equality, Equality, Basic understanding of Property of Equality, Cross application of Property of Equality, The Conceptual Hierarchy of Property of Equality |
論文種類: | 學術論文 |
相關次數: | 點閱:160 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究對等量公理進行概念分析,探討等量公理所包含的概念成份及成份間的關係,並據此提出等量公理的概念結構,發展等量公理概念的層次性,最後嘗試建立評量學生對等量公理層次瞭解的工具。
本研究採用文獻分析法與調查研究法,進行方式是透過對所蒐集文獻的分析,以及使用自行開發的題目,並採用蓋特曼量表的理念對等量公理作層次性的評量。本研究的研究對象是以便利取樣選取台北市某國中七年級的五個班級,合計共安排159名學生進行調查。
研究分析的結果顯示,等量公理包含了「相等概念」與「等量操作」兩種概念,且等量公理的概念內涵具有層次性,由低至高的順序分別為:(一)相等概念;(二)等量公理基本理解;(三)等量公理交叉應用。
據本研究所蒐集的資料,有證據顯示,通過第一層的學生約為76.73%;通過第一層與第二層的學生約32.08%;通過第一、第二和第三層的學生約18.88%,而符合蓋特曼量表之常態表現的學生佔全體總數88.68%。
研究結果部分顯示,本研究題目可作為初步判別學生對等量公理概念瞭解程度的依據,故此份題目可提供教師作為教授等量公理課程時,判斷學生在學習上的差異,藉以發現學生在等量公理之學習狀況進行更深入的瞭解,並對於學習狀況較不足的學生,進行補救教學設計之依據。
關鍵字:等量公理、相等概念、等量公理基本理解、等量公理交叉應用、等量公理概念層次
This research proceeds conceptual analysis of Property of Equality to clarify the conceptual components and the relationship among components. Accordingly, it proposes the conceptual structure of Property of Equality, develops its hierarchy. Finally, for the students to understand the hierarchy of Property of Equality, it tries to establish the evaluation tools.
This study adopts content analysis method for survey research, utilizes questions developed by the researcher, and applies to Guttman Scale to conduct analysis of the hierarchical structure. The subjects are five classes in 7th grade in certain junior high school in Taipei City with a total of 159 students for the survey.
The research results show that Property of Equality consist of two concepts, “equality” and “operation of equality.” In addition, it is characterized with hierarchy, from the low to high are: (1) Equality; (2) Basic understanding of Property of Equality; and (3) Cross application of Property of Equality.
By Guttman Scale for analysis of hierarchical structure, it is found that the percentage of those who pass the 1st layer is around 76.73%; that of those who pass the1st and 2nd layer is about 32.08%; that of those who pass all the 3 layers is about 18.88%. Students who match the normal performance of Guttman Scale occupies 88.68% of the total.
The research results find that we can determine how the students understand the Property of Equality by model, including the hierarchical structure and the questions. We can offer the questions to the teachers to judge students’ variance in learning Property of Equality. By means of the questions, it can be found that the students are performing better in Property of Equality. As a result, the teaching content can be deepened and broadened to enhance students’ ability in this area. In contrast, for those who perform fair, we may raise their learning ability by the abovementioned model to make up the insufficiency of teaching design.
Keywords:Property of Equality, Equality, Basic understanding of Property of Equality, Cross application of Property of Equality, The Conceptual Hierarchy of Property of Equality
中文部份
上官瑋茵(2010)。國中課程綱要代數分年細目詮釋的等號類型之內容分析(未出版之碩士論文)。國立中山大學,高雄市。
李文林(2003)。數學史概論。九章:臺北市。46-52
南一書局教科書編撰委員會編輯(2011)。國民中學數學第一冊。南一:臺南市。
梁宗巨(1995)。數學歷史典故。九章:臺北市。119-163。
連信欽(2002)。探討國中生在解不同幾何問題時應用等量公理的情況(未出版之碩士論文)。國立臺灣師範大學,臺北市。
莊松潔(2005)。不同年級學童在具體情境中未知數概念及解題歷程之研究(未出版之碩士論文)。國立中山大學,高雄市。
張文哲(譯)(2005)。教育心理學 : 理論與實際(原著者:R. E. Slavin)。臺灣培生教育出版:臺北市。(原著出版年:2005)。
張春心(2007)。教育心理學:三化取向的理論與實踐重修二版。臺灣東華:臺北市。
張英傑(2011)。國小課本數學12。南一:臺南市。
陳嘉皇(2008)。國小學童等號概念解釋與解題策略初探。臺灣數學教師電子期刊,臺北市,13,34-46。
陳秀聞(2010)。九年一貫數學領域課程六年級和七年級代數教材銜接之研究(未出版之博士論文)。國立臺北教育大學,臺北市。
教育部(2008)。國民中小學九年一貫課程綱要數學學習領域。教育部:臺北市。
康軒文教事業股份有限公司編輯部(2011)。國中數學第一冊。康軒:新北市。
楊瑞智(2011)。國小數學6下課本。康軒:新北市。
趙文敏(1988)。幾何學概論。九章:臺北市。14-15。
廖學專(2003)。初探國中生等號概念之心像(未出版之碩士論文)。國立臺灣師範大學,臺北市。
歐陽絳(譯)(1997)。數學史概論(原著者:H. Eves)。曉園:臺北市。(原著出版年:1990) 。142-156。
鄭鈐華(2003)。探討國小六年級學生在不同幾何題中應用等量公理解題的情形(未出版之碩士論文)。國立臺灣師範大學,臺北市。
翰林作者群(2011)。國小數學課本(6下) 。翰林:臺南市。
翰林作者群(2011)。國中數學課本(1上) 。翰林:臺南市。
譚寧君(1995)。面積概念探討。國民教育,35,14-19。
英文部分
Anastasi, A. & Urbina, S. (1997). Psychological testing (7th ed.). Upper Saddle River, N.J.: Prentice Hall.
Alagumalai, S., Curtic D. D., & Hungi, N. (2005). Applied Rasch measurement: A book of exemplars. Dordrecht, Netherlands: Springer.
Cohen, R. J., Swerdlik, M. E., & Smith. D. K. (1992). Psychological testing and assessment: An introduction to tests and measurement. Mountain View, California: Mayfield Pub. Co.
Darr, C. (2003). The meaning of “equals”. New Zealand Council for Education Research, 2, 4-7. Retrieved on December 4, 2011, from the World Wide Web: http://arb.nzcer.org.nz/supportmaterials/maths/setarticlemeaningofequalsforwebsite.pdf
Gregory, R. J. (1992). Psychological testing: History, principles, and applications. Boston, MA: Allyn and Bacon.
Jobling, D., & Snell, E. J. (1961). The use of the coefficient of reproducibility in attitude scaling. The Incorporated Statistician, 11(2), 10-118. Retrieved on July 1, 2012, from the World Wide Web: http://www.jstor.org/stable.2987432.
Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12, 317-326.
Kline, P. (1993). The handbook of psychological testing. London, England: Routledge.
Ludlow, S., & Walgamuth, C. (1998). Third grades' interpretations of equality and the equal symbol. Educational Studies in Mathematics, 35, 153-187.
Ornum, W. V., Dunlap, L. L., & Shore, M. (2008). Psychological testing across the life span. Upper Saddle River, NJ: Pearson Prentice Hall.
Rovinelli, R. J., & Hambleton, R. K. (1977). On the use of content specialists in the assessment of criterion-referenced test item validity. Dutch Journal of Educational Research, 2, 49-60.
Tam, H. P., & Lien, H.C. (2002). On the use of the addition and the subtraction properties of equality in geometric argumentation by junior high students in Taiwan. Paper presented at the 2002 International Conference on Mathematics: Understanding Proving and Proving to Understand, Taipei, Taiwan, Nov. 16-19.
Trochim, W. M. K. (2002). Guttman scaling. Research Methods Knowledge Base. Retrieved on July 1, 2012, from the World Wide Web: http://www.socialresearchmethods.net/kb/scalgutt.php.