簡易檢索 / 詳目顯示

研究生: 李長憲
LI, Chang-Hsien
論文名稱: 以田口法搭配有限元分析之撓性絞鍊研究
The Research on Flexure Hinges with Taguchi Method and FEA
指導教授: 屠名正
Twu, Ming-Jenq
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 69
中文關鍵詞: 撓性絞鍊田口法有限元素法
英文關鍵詞: Flexure hinges, Taguchi method, FEA
論文種類: 學術論文
相關次數: 點閱:201下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著產業往下一世代發展,超精密定位、微位移之課題更顯殷切。近年來關於這方面的研究大多搭配壓電塊與撓性絞鍊的設計,以達到奈米等級的定位。而在半導體製程上,除了原有的IC設計,更多了所謂的微機電系統(Micro Electro Mechanical System),而製程上的限制,也使得其發展多利用撓性絞鍊來設計感測器。
    本篇論文以撓性絞鍊為主角,進行相關的文獻搜尋、探討,針對目前的研究進展及課題作一回顧整理。針對撓性絞鍊,本研究將其分為撓性佳易變形及剛性強位移解析度高之兩類,以田口法(Taguchi method)做參數規劃,並採用有限元素法(Finite Element Analysis)對其進行分析。由結果數據,探討各參數間對撓性絞鍊的撓性、剛性及應力分佈之比較分析,以獲得其最大影響參數;再進一步更改其形狀外觀設計,比較不同撓性絞鍊的位移及應力表現,探討其優缺點,並提出相關新型撓性絞鍊想法、設計,提供相關設計者參考使用。最後並對結果進行驗證實驗,以確認我們所提出的結論;進行驗證比較,以確認我們所提出之型態可符合一般使用。
    利用田口法搭配有限元分析,可由分析結果數據,評估撓性結構設計上的參數要因,得到較佳的相對尺寸設計。

    By the high technology for next generation, ultra-precision position and micro displacement is the key object. Those years, the researcher used piezoelectric actuator and flexure hinges to do some design for nanometer position. In semiconductor process, beside IC design, there is a MEMS (Micro Electro Mechanical System), for which the advantage of flexure hinges to design sensor must be taken.
    This study focus on the flexure hinges, searching relative papers to retrospection of recent advances. The flexure hinges were separated into two sorts: better flexibility easy to buckle and better rigidity to maintain position resolution. We use Taguchi method to design the static analysis parameters for flexure hinges and FEA (Finite Element Analysis) to analyse. It aims at to investigate the influence of the parameters on flexibility, stiffness, stress distribution, hence to identify the most significant parameters. Furthermore, according to the comparison of results of displacements and the stresses due to the changes of parameters of the structure, a novel design is proposed for designer to use. Finally, we design experiments to test and verify the results and discuss.
    The relative size of optimal design can instinctively be obtained with Taguchi methods and FEA.

    目錄 誌謝 1 摘要 2 Abstract 3 目錄 4 圖目錄 6 表目錄 9 第一章 緒論 10 1.1 源起 10 1.2 撓性絞鍊的優缺點 11 1.3 研究動機與目的 12 1.4 研究之步驟方法與限制 13 1.5 論文架構 15 第二章 撓性絞鍊 16 2.1 撓性絞鍊之概念 16 2.2 撓性絞鍊之文獻探討 18 2.3 撓性絞鍊之理論推導 19 2.3.1 基本旋轉剛性值 20 2.3.2 旋轉精準度 22 第三章 分析方法介紹 23 3.1 田口法 23 3.1.1 田口法簡介[27] 23 3.1.2 L9(34)直交表 24 3.2 有限元分析 26 3.2.1 有限元素分析簡介 26 3.2.2 有限元素分析參數選用說明 28 第四章 撓性絞鍊設計與分析比較 29 4.1 誤差比較及分析 29 4.1.1 2D與3D的誤差分析比較 29 4.1.2 機械加工誤差分析 33 4.2 撓性佳變形量大之撓性絞鍊 34 4.2.1 平板葉片式基本分析 35 4.2.2 彈性結構體設計 38 4.2.3 陳列平板葉片式設計 41 4.3 剛性強位移解析度高之撓性絞鍊 43 4.3.1 圓角割痕式基本分析 44 4.3.2 角落補償設計 46 4.3.3 串聯圓角割痕式設計 49 4.4 複合式撓性絞鍊設計 52 4.4.1 以平板葉片式架構成圓角割痕型 52 4.4.2 以圓角割痕式弱化為平板葉片型 56 4.5 本章各節小結 58 第五章 分析結果驗證與評估討論 60 5.1撓性佳變形量大之絞鍊綜合驗證 60 5.2剛性強解析度高之絞鍊綜合驗證 62 第六章 結論與未來展望 65 參考文獻 66

    參考文獻
    [1] 張昫揚, “長行程奈米定位系統研究”, 國立中興大學機械工程研究所碩士論文, 8月, 2002, p. 2.
    [2] F.E. Scire and E.C. Teaque, “Piezodriven 50-um Range Stage with Subnanometer Resolution”, Rex. Sci. Instrum, Vol. 49, No. 12, December, 1987, pp. 1735-1740.
    [3] G.M. Chen, J.Y. Jia, and Z.W. Li, “On Hybrid Flexure Hinges”, IEEE, 2005, pp. 700-703.
    [4] N. Lobontiu, “Compliant Mechanisms:Design of Flexure Hinges”, CRC Press, 2002, Chapter 1.
    [5] 徐肇辰,“便於微組裝之微平台機構設計與分析之研究”, 國立中山大學機械與機電工程研究所碩士論文, 7月, 2004, pp.56~57.
    [6] 陳玉美, 趙魯平, 鍾佳龍, “二維微奈米定位平台之窄距葉簧式導引機構”, 逢甲大學機械工程研究所, 先進工程學刊, Vol. 2, No. 2, April, 2007, pp. 67-72.
    [7] 李书环, “車削用微進給刀架設計”, 工程設計學報, Vol. 13, No. 6, Dec, 2006, pp. 410-415.
    [8] 陳威帆, “平面微型撓性縮放儀機構設計之研究”, 國立中山大學機械與機電工程研究所碩士論文, 7月, 2005.
    [9] J.M. Paros and L.Weisboro, “How to Design Flexure Hinges”, Machine Design, 1965, 37:151~157.
    [10] S.T. Smith, D.G. Chetwynd and D.k. Bowen, “Design and Assessment of Monolithic High Precision Translation Mechanisms”, J. Phys. E: Sci. Instrum., 1987, pp. 977-983.
    [11] Hong Gao, “Study on Micro Positioning Stage Using Flexure Hinge”, Master Thesis, Qinghua University, 1988.
    [12] A. Midha, T.W. Norton and L.L. Howell, “On the Nomenclature, Classification, and Abstractions of Compliant Mechanisms”, Transactions of the ASME, J. of Mechanical Design, Vol. 116, 1994, pp. 270-279.
    [13] J. Her, J.C. Chang, “A Linear Scheme for the Displacement Analysis of Micropositioning Stages with Flexure Hinges”, Transactions of the ASME, Journal of Mechanical Design, Vol. 166, 3, 1994, pp. 770-776.
    [14] W. Xu, “Piezoelectric Harmonic Motors: Construction Possibilities and Performance Characteristics”, M. Phil thesis, School of Manufacturing and Mechanical engineering, University of Birmingham, May, 1994.
    [15] L. Saggere, S. Kota, and S.B. Crary, “A New Design for Suspension of Linear Micro-acutators”, Proceedings, DSC-Vol 55-2, Dynamic Systems and Control, Vol. 2, 1994.
    [16] W.Xu and T.G.King, “Mechanical Amplifier Design for Piezo-actuator Applications”, The Institution of Electrical Engineers, Savoy Place, London WC2R OBL, UK, 1995.
    [17] T.S. Smith and V.G. Badami, “Elliptical Flexure Hinges”, J.Rev Sci Instrum, Vol. 68, 1997, pp.1474-83.
    [18] J.W. Ryu and D.G. Gweon, “Error Analysis of a Flexure Hinge Mechanism Induced by Machining Imperfection”, J. Precision Eng, Vol. 21, 1997, pp.83-89.
    [19] N. Lobontiu, J. Paine, E. Garcia, and M. Goldfarb, “Corner-Filleted Flexure Hinges,” ASME J. Mech. Des., 123(3), 2001, pp. 346-352.
    [20] N. Lobontiu, J. Paine, E. O’Malley, M. Samuelson, “Parabolic and Hyperbolic Flexure Hinges: Flexibility, Motion precision and Stress Characterization Based on Compliance Closed-form equations”, Precis Eng, vol. 26, 2002, pp. 183-192.
    [21] N. Lobontiu, J. Paine, E. Garcia, M. Goldfarb, “Design of Symmetric Conic-section Flexure Hinges Based on Closed-form Compliance Equations”, Mech. Mach. Theory, Vol. 37, 2002, pp. 477-498.
    [22] Gui-Min Chen, Jian-Yuan Jia, and Zhi-Wu Li, “Right Circular Corner Filleted Flexure Hinges”, International Conference on Automation Science and Engineering, Edmonton, Canada, 2005.
    [23] 徐貴敏,賈建援,劉小院, “On Right-circular Elliptical Flexure Hinge”, Machine Design and Research, China,V0l.21, No.4, 2005.
    [24] Z.J. Zhang and Y.B. Yuan, “Research on a Novel Flexure Hinge”, Institute of Physices Publishing, Vol.48, 2006, pp. 287~291.
    [25] R.Ryan Vallance, B.Haghighian, and Eric R.Marsh, “A General Geometric Model for Determining Optimal Shapes of Planar Elastic Pivots”, Precision Systems Laboratory,DC USA, 2007.
    [26] Shen Jingying, “Study on Performance of Flexure Hinge Mechanism Based on the EBM”, The Eighth International Conference on Electronic Measurement and Instruments, 2007.
    [27] 李輝煌, “田口方法-品質設計的原理與實務”, 高立圖書有限公司, 8月20日, 二版三刷, 2006.
    [28] Turner, M.J, R.W. Clough, H.C. Martin, and L.J. Topp, “Stiffness and Deflection Analysis of Complex Structures”, Journal Aeronautical Science, Vol. 23, 1956, pp. 805-824.
    [29] R.J. Melosh, “Basis for Derivation of Matrices for the Direct Stiffness Method”, Journal American Institute for Aeronautics and Astronautics, Vol. 1, 1965, pp. 1631-37.
    [30] Szabo, A. Barna, and George C. Lee, “Derivation of Stiffness Matrices for Problems in Plane Elasticity by Galerkin’s Method”, International Journal of Numerical Methods in Engineering, Vol. 1, 1969, pp. 301-310.
    [31] O.C. Zienkiewicz, “Finite Element Method in Engineering Science”, McGraw-Hill, London, 1971.
    [32] B. Zettl, W. Szyszkowski and W.J. Zhang, “On Systematic Errors of Two-dimensional Finite Element Modeling of Right Circular Planar Flexure Hinges”, Transactions of the ASME, Vol. 127, July 2005, pp.782-787.
    [33] J.H Zhang, C.R. Xiao, and X.D. Yang, “Design of 2D Flexible Hinge Stage with Multi-Parameter Feedback Control”, IOP, No.48, 2006, pp. 233-238.

    下載圖示
    QR CODE