簡易檢索 / 詳目顯示

研究生: 蕭智新
Chin-Shing Shiao
論文名稱: 雙頻道葡萄糖/尿素碳六十固定化酵素選擇性電極之研製與應用
Preparation and Application of two-channeled Enzyme Electrodes for Glucose and Urea
指導教授: 施正雄
Shih, Jeng-Shong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 115
中文關鍵詞: 碳六十大環胺醚葡萄糖氧化酵素尿素水解酵素離子選擇性電極雙頻道酵素電極
英文關鍵詞: C60, cryptand, glucose oxidase, urease, ISE, two-channeled, enzyme electrode
論文種類: 學術論文
相關次數: 點閱:152下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙頻道葡萄糖/尿素碳六十固定化酵素選擇性電極之研製與應用

    中文摘要
    本研究合成固定化碳六十/葡萄糖氧化酵素(C60-Glucose Oxidase)和固定化碳六十/尿素水解酵素(C60-Urease)並分別應用在葡萄糖及尿素選擇性C60-Cryptand[2,2] / PVC電極感測系統中,用以偵測待測溶液中的葡萄糖或尿素分子。酵素所以能充當檢測生體成分的工具,是因其基質特異性高且能讓反應在和緩條件下進行。在C60-Cryptand[2,2]葡萄糖薄膜電極系統中,偵測葡萄糖分子被葡萄糖氧化酵素催化為葡萄糖酸經解離得到的氫離子,而C60-Cryptand[2,2]尿素選擇性薄膜電極中,偵測水溶液中尿素分子經尿素水解酵素催化所形成的銨根離子。實驗中將分別探討碳六十固定化酵素及PVC的含量、溫度、pH值的改變及干擾因子對電極電位變化的影響。在葡萄糖選擇性薄膜電極偵測系統中,固定化C60-Glucose Oxidase在30oC左右的溫度下,有很好的催化效果,而最適pH值則在7附近,且發現當膜上所含C60-Glucose Oxidase的量增加時,催化的效果越明顯。在干擾係數的測定方面,一些血液中常見的鹼金族及鹼土族的離子選擇性係數在10-2左右。在尿素選擇性薄膜電極偵測系統中,最適pH值也在7附近而最佳溫度為室溫。在干擾離子方面,大部分干擾離子的選擇性係數也在10-2左右,血液中常見的有機物如半乳糖、半胱銨酸、酪銨酸及維他命C,幾乎對此系統於葡萄糖及尿素的測定上沒影響。

    目錄 中文摘要.................................................Ⅰ Abstract.................................................Ⅱ 目錄…………………………………………………………………… Ⅲ 圖目錄………………………………………………………………… Ⅵ 表目錄………………………………………………………………… Ⅸ 第一章 緒論 1-1 生化感測器簡介…………………………………………………1 1-1-1 生化感測器之定義…………………………………………1 1-1-2 辨識元之種類………………………………………………1 1-1-3 轉能器的種類………………………………………………3 1-2 酵素化學…………………………………………………………4 1-2-1 酵素的發現史………………………………………………4 1-2-2 酵素的特異性或專一性(specificity)……………… 5 1-2-3 酵素的催化特性……………………………………………5 1-2-4 酵素溫度效應………………………………………………6 1-2-5 酵素pH值效應…………………………………………… 7 1-2-6 溶劑對酵素活性的影響……………………………………7 1-2-7 固定化酵素(Immobilized enzyme)……………………8 1-2-8 葡萄糖氧化酵素的介紹……………………………… 15 1-2-9 尿素水解酵素的介紹………………………………… 16 1-3 碳六十簡介…………………………………………………… 18 1-3-1 碳六十(C60)的發現…………………………………… 18 1-3-2 碳六十的基本性質……………………………………… 19 1-3-3碳六十的化學反應……………………………………… 22 1-4 冠狀醚與大環胺醚的簡介及應用…………………………… 24 1-4-1 冠狀醚與大環胺醚簡介………………………………… 24 1-4-2 冠狀醚錯合反應與主客化學…………………………… 28 1-4-3 碳六十/大環胺醚在分離無機陰陽離子上的應用…… 29 1-5 選擇性電極簡介……………………………………………… 33 1-5-1 電極膜傳輸機制………………………………………… 33 1-5-2 選擇性電極膜之設計…………………………………… 37 1-5-3 陽離子選擇性電極……………………………………… 40 1-5-4 陰離子選擇性電極……………………………………… 41 1-5-5 選擇性係數Kpot的測量………………………………… 42 1-6 本研究動機、目的及方法………………………………………46 第二章 實驗部分………………………………………………………47 2-1 藥品與儀器…………………………………………………… 47 2-2 實驗系統……………………………………………………… 47 2-2-1 碳六十/大環胺醚(C60-Cryptand)之合成……………… 49 2-2-2 碳六十/葡萄糖氧化酵素(C60-Glucose Oxidase)之合成50 2-2-3 電極膜的製備…………………………………………… 50 2-3 干擾離子之干擾係數求法…………………………………… 54 第三章 結果與討論……………………………………………………55 3-1 氫離子選擇性電極的製作…………………………………… 55 3-1-1 碳六十-大環胺醚的鑑定……………………………… 55 3-1-2 電極製成的最佳條件…………………………………… 55 3-1-3 靜態與動態及穩定度的影響…………………………… 64 3-1-4 干擾離子選擇性係數之測定…………………………… 68 3-2 銨根離子選擇性電極的製作………………………………… 72 3-2-1 銨根離子電極製成之最佳條件………………………… 72 3-2-2 選擇性係數的測定...............................78 3-3 碳六十-固定化葡萄糖氧化酵素電極……………………… 82 3-3-1 碳六十-固定化酵素電極的製備...................82 3-3-2 以吸附法製備碳六十-固定化酵素電極薄膜.........82 3-2-3 碳六十-固定化葡萄糖氧化酵素電極………………… 91 3-4 碳六十-固定化尿素水解酵素電極.....................95 3-4-1 以吸附法來製作碳六十-固定化尿素水解酵素薄膜...95 3-4-2 碳六十-固定化酵素電極.........................95 3-5 雙頻道系統的應用………………………………………… 104 第四章 結論………………………………………………………… 109 參考資料…………………………………………………………… 110

    參考資料
    1. 呂鋒洲; 林仁混. 基礎酵素學. 1991.
    2. 陳治誠. 生化感測器技術簡介. 科儀新知. 1993, 15(2), 71-81.
    3. 陳國誠. 微生物酵素工程學. 1989
    4. Chuang,W. and Shih, J. S., Preparation and Application of Immobilized-Glucose Oxidase Enzyme in Fullerene C60-Coated Piezoelectric Quartz Crystal Glucose Sensor, Sensors & Actuators 2001, 81(1), 1-8
    5. Chang, M. S. and Shih, J. S., Fullerene-Cryptand Coated Piezoelectric Crystal Membrane Glucose Enzyme Sensor, Sensors & Actuators, 2000, 67, 275-281
    6. Bowers, Larry D. Application of immobilized biocatalysts in chemical analysis. Anal. Chem. 1986, 58(4), 513A-530A.
    7. Liu, B.; Hu, R; Deng, J. Fabrication of an amperometric biosensor based on the immobilization of glucose oxidase in a modified molecular sieve matrix. Analyst. 1997, 122, 821-826
    8. Liu, B.; Hu, R; Deng, J. Fabrication of an amperometric biosensor based on the immobilization of glucose oxidase in a modified molecular sieve matrix. Analyst. 1997, 122, 821-826
    9. Herdan, J. M.; Balulescu, M.; Cira, O. Enantioselective hydrolysis of racemic esters using pig liver esterase. Journal of Molecular Catalysis A:Chemical. 1996, 107, 409-414.
    10. Nursel Pekel; Bekir Salih; Olgun Güven Activity studies of glucose oxidase immobilized onto poly(N-vinylimidazole) and metal ion-chelated poly(N-vinylimidazole) hydrogels. Journal of Molecular Catalysis B: Enzymatic 2003, 21, 273-282
    11. Godjevargova, Ts.; Dimov, A.; Vassileva, N. Effects of chemical modifications and immobilization of glucose oxidase onto acrylonitrile copolymer membranes on membrance potential and membrance charge density Journal of Membrane Science. 1996 , 116, 273-278.
    12. Sinan Akgol; Handan Yavuz; Serap S¸ enel; Adil Denizli. Glucose oxidase and catalase adsorption onto Cibacron Blue F3GA-attached microporous polyamide hollow-fibres Reactive & Functional Polymers 2003, 55, 45-51
    13. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F., Smalley, R. E. C60:Buckminsterfullerene. Nature. 1985, 318, 162-163.
    14. Hawkins, J. M.; Meyer, A.; Lewis, T. A.; Loren, S.; Hollander, F. J. Crystal Structure of Osmylated C60 : confirmation of the soccer Ball framework. Science. 1991, 252, 312-313
    15. Scrirens, W. A.; Bedworth,P. V.; Tour,J. M. Purification of gram quanties of C60. A new inexpensive and facile method. J. Am. Chem. Soc. 1992, 114, 7917
    16. Chen, W.; Xu, Z. Temperature dependence of C60 solubility in different solvent. Fullerence Science And Technology. 1998, 6 , 695
    17. Haufler, R. E.; Conceicao, J.; Chibante, L. P. F.; Chai, Y.; Byrne, N. E.; Flanagan, S.; Haley, M. M.; O’Brien, S. C.; Pan, C.; Xiao, Z.; Billups, W. E.; Ciufolini, M. A.; Smalley, R. H. Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J. Phys. Chem. 1990, 94(24), 8634-8636.
    18. Pederson, C.J. Crystalline salt complexes of macrocyclic polyethers J. Am. Chem. Soc. 1970,92,386-388
    19. Lehn, J. M.; Sauvage, J. P. Cryptates. XVI. [2]-Cryptates. Stability and selectivity of alkali and alkaline-earth macrobicyclic complexes J. Am. Chem. Soc. 1975, 97, 6700-6707
    20. Suzuki, K.; Yamada, H.; Sato, K.; Watanabe, K.; Hihamoto, H.; Tobe, Y.; Kobiro, K. Design and synthesis of highly selective ionophores for lithium ion based on 14-crown-4 derivatives for an ion-selective electrode Anal. Chem. 1993, 65, 3404-3410
    21. Jeng, J. and Shih, J. S. Sodium Ion Selective Electrode Based on Crown Ether Phosphotungstenic Acid Precipitates Analyst, 1984, 109, 641-643
    22.Bijay Sarkar; Pritam Mukhopadhyay; Parimal K. Bharadwaj Laterally non-symmetric aza-cryptands: synthesis, catalysis and derivatization to new receptors Bijay Sarkar, Coordination Chemistry Reviews 2003, 236, 1~13.
    23. Pearson, R. G. Hard and soft acids and bases J. Am. Chem. Soc. 1963, 85, 3533-3539.
    24. Philip, C. J.; Jacqueline, M. G.; Stephen, F. L.; Edward, R. T. Complexation of alkali metal ions by the cryptand 4,7,13,16-tetraoxa-1,10-diazabicyclo[8.8.5] tricosane,C22C5.A structural and equilibrium study. Inorg. Chem. 1992, 31, 3398-3404.
    25.Frensdorff, H. K. Stability constants of cyclic polyether complexes with univalent cations. J. Am. Chem. Soc. 1971, 93, 600-606.
    26. Satsuo, K.; Ajay, B.; Yumi, F.; Hiroyuki, M. Copper(II)-selective electrode using thiuram disulfide neutral carriers. Anal. Chem. 1988, 60, 2464-2467.
    27.Cox, B. G.; Schneider, H.; Strroka, J. Kinetics of alkali metal complex formation with cryptands in methanol. J. Am. Chem. Soc. 1978, 100, 4746-4749.
    28.Richard, S. H.; Leonidas, G. B. Nitrate-selective electrode developed by electrochemically mediated imprinting/doping of polypyrrole Anal. Chem. 1995, 67, 1654-1660
    29. Simmons, H. E.; Park, C. H. Macrobicyclic amines. I. Out-in isomerism of 1,(k+2)-diazabicyclo[k.l.m]alkanes J. Am. Chem. Soc. 1968, 90, 2428-2429.
    30. Hans K. Frensdorff Stability constants of cyclic polyether complexes with univalent cations J. Am. Chem. Soc.; 1971; 93(3); 600-606.
    31. Chiou, C. S. and Shih, J. S. Multifunctional Cryptand Coated Piezoelectric Quartz Crystal Detector for Cations, Anions and Organic Molecules, Anal. Chim. Acta. 1999, 392, 125-133
    32. Wei, L. F. and Shih, J. S. Fullerene-Cryptand Coated Piezoelectric Crystal Urea Sensor Based on Urease, Anal. Chim. Acta. 2001, 437, 77-85
    33. Chiou, C. S.; Shih, J. S. Bifunctional cryptand modifier for capillary electrophoresis in separation of inorganic/organic anions and inorganic cations. Analyst 1996, 121, 1107-1110.
    34. Allen J. Bard& Larry R. Faulkner. “Electrochemical Method”, 1980, John Wiley& Sons, U.S.A.
    35. Aodhmer, C.; Zhiqiang, G.; Andrzej, L.: Ari, I. All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(vinyl chloride) membrane with a polypyrrole solid contact. Anal. Chem.1992, 64, 2496-2501
    36. Suresh, K. S.; Vinod, K. G.; Suresh, PVC-based 2,2,2-cryptand sensor for zinc ions J. Anal. Chem. 1996, 68, 1272-1275.
    37. Jordi, B.; Sylvia, D.; Leonidas, G. B. Selective electrodes for silver and anions based on polymeric membranes containing complexes of triisobutylphosphine sulfide with silver. Anal. Chem. 1991, 63, 1585-1589.
    38. Maria de los A.; Arada Pèrez; Leonel Marín; Josefina Calvo Quintana; Mehrdad Yazdani-Pedram. Influence of different plasticizers on the response of chemical sensor based on polymeric membranes for nitrate ion determination. Sensors & Actuators B 2003, 89, 262-268
    39. Vasile, V. C.; Miklos, E.; James, S. R.; Timothy, A. J.; Michael, R. N.; Richard, P. B. Aliphatic polyurethane as a matrix for pH sensors: effects of native sites and added proton carrier on electrical and potentiometric properties. Talanta 1996, 43, 143-151.
    40. Jain. A. K.; Gupta, V. K.; Singh, L. P.; Khurana, U. Macrocycle based membrane sensor for the determination of cobalt(II) ions Analyst 1997, 122, 583-586.
    41. Lee, H. J.; Hong, U. S.; Lee, D. K.; Shin, J. H.; Nam, H.; Cha, G. S. Solvent-processible polymer membrane-based liquid junction- free reference electrode Anal. Chem. 1998, 70, 3377-3383.
    42. Keplinger, E. J.; Jachimowicz, A.; Kohl, F. Water flux across neutral carrier membranes Anal. Chem. 1998, 70, 4271-4279.
    43. Kimura, K.; Sunagawa, T,.; Yajima, S.; Miyake, S.; Yokoyama, Y. Neutral carrier-type ion sensors based on sol-gel-derived membranes incorporating a bis(crown ether) derivative by covalent bonding. Anal. Chem. 1998, 70, 4309-4313.
    44. Marin, H.; Peter, M, G,; Werner, E. M.; Simon, W. Membrane technology and dynamic response of ion-selective liquid-membrane electrodes. Anal. Chem. 1991, 63, 1380-1386.
    45.Wang, D. and Shih, J. S. Cesium Ion Selective Electrode Based on 15-Crown-5-PW, Analyst 1985, 110, 635-638
    46. Lai, M. T. and Shih, J. S. Mercury (II) and Silver (I) Ion Selective Electrodes Based on Dithia Crown Ethers, Analyst, 1986, 111, 891-895
    47. Sheen, S. R. and Shih, J. S. Lead (II) Ion Selective Electrodes Based on Crown Ethers, Analyst, 1992, 117, 1691-1695
    48. Yuan, R.; Chai, Y. Q.; Liu, D.; Gao, D.; Li, J. Z.; Yu, R. Q. Schiff base complexes of cobalt(II) as neutral carriers for highly selective iodide electrodes Anal. Chem. 1993, 65, 2572-2575.
    49. Stacy, A. O.; Sylvia, D.; Leonidas, G. B. Nitrogen oxide gas sensor based on a nitrite-selective electrode. Anal. Chem. 1991, 63, 1278-1281
    50. Oesch, U.; Brzozka, Z.; Xu, A.; Rusterholz, B.; Suter, G.; Pham, H. V.; Welti, D. H.; Ammann, D.; Pretsch, E.; Simon, W. Design of neutral hydrogen ion carriers for solvent polymeric membrane electrodes of selected pH range. Anal. Chem. 1986, 58, 2285-2289.

    無法下載圖示 本全文未授權公開
    QR CODE