簡易檢索 / 詳目顯示

研究生: 吳奇軒
Wu, Chi-Shiuan
論文名稱: 探討致癌基因KRAS在薑黃素合併FDA核准標靶用藥對人類大腸直腸癌細胞的角色
The role of KRAS gene in combination treatment of Curcumin and FDA-approved Targeted Drugs in human colorectal cancer cells
指導教授: 蘇純立
Su, Chun-Li
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 120
中文關鍵詞: 薑黃素癌瑞格細胞自噬細胞凋亡合成致死大腸直腸癌細胞
英文關鍵詞: Curcumin, Regorafenib, Autophagy, Apoptosis, Synthetic lethality, Colorectal cancer
DOI URL: https://doi.org/10.6345/NTNU202204039
論文種類: 學術論文
相關次數: 點閱:183下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薑黃素為天然多酚類化合物,許多研究證實具有抗癌功效。大腸直腸癌在臺灣癌症死因中排名第三位,全世界約有35-45%的大腸直腸癌病患會有致癌基因KRAS突變的問題,KRAS突變也與治療產生阻抗及預後較差有關。Regorafenib為小分子多激酶抑制劑,無論病患KRAS基因狀態皆可使用,是目前治療大腸直腸癌的最後一線用藥 。本研究使用薑黃素合併Regorafenib進行實驗,使用MTT assay發現Curcumin合併Regorafenib在HCT 116(KRAS mutant)細胞的生長抑制效果顯著優於parental HT-29(KRAS wild type)細胞,以流式細胞儀分析細胞凋亡及細胞自噬結果發現HCT 116細胞的sub-G1(細胞凋亡)及AVOs(細胞自噬)的比例顯著高於parental HT-29細胞。使用HT-29 KRAS mutant inducible細胞檢測發現在HT-29 induced KRAS mutant細胞的生長抑制效果較HT-29 KRAS mutant細胞好。最後利用U0126處理HCT 116、parental HT-29細胞,發現Curcumin合併Regorafenib在KRAS mutant細胞中可能藉由標靶RAF及MEK蛋白引發合成致死作用,增加細胞死亡數量。

    Curcumin, a polyphenol mainly from Asian foods, has been reported to exhibit anti-cancer activity. Colorectal cancer is third most common cause of cancer-related death in Taiwan. KRAS is the most frequently mutated RAS isoform, having been shown to be mutated in 35-45% of colorectal cancers (CRC) worldwide. KRAS mutation failed to targeted therapies and led to poor prognosis. Regorafenib is a FDA-approved multi-kinase inhibitor used as the last-line drug for CRC patients despite the RAS genotype. To determine whether Curcumin can enhance Regorafenib-induced cytotoxicity of CRC with KRAS mutation, CRC HCT 116 (KRAS mutant), parental HT-29 (KRAS wild-type) and KRAS mutant HT-29 (with inducible KRAS mutant gene) cells were used. MTT analysis indicated that Curcumin in the presence of Regorafenib had a higher growth inhibition on HCT 116 cells than parental HT-29 cells. Addition of Curcumin not only significantly enhanced Regorafenib-induced elevation in the percentage of cells at the sub-G1 phase (induction of apoptosis) and cells with acidic vesicular organelles (induction of autophagic flux) on HCT 116 cells, compared to that on parental HT-29 cells using flow cytometry. MTT analysis also indicated that Curcumin in the presence of Regorafenib had a higher growth inhibition on HT-29 induced KRAS mutant cells than HT-29 KRAS mutant cells. The use of MEK inhibitor U0126 increased the cytoxicity, percentage of cells at the sub-G1 phase and AVOs on HCT 116 and parental HT-29 cells.Taken together, these data suggest that Curcumin plus Regorafenib may target one more gene other than mutant KRAS and enhanced the cytotoxicity (Synthetic Lethality) on CRC, indicating a critical role of Curcumin on KRAS mutant CRC treated with Regorafenib.

    第一章 緒論............................................................................................... 1 第一節 大腸直腸癌 ............................................................................... 1 一、 大腸直腸癌的流行與發生 ....................................................... 1 二、 大腸直腸癌腫瘤生長(Tumorigenesis)之機轉 ................... 2 三、 大腸直腸癌與致癌基因KRAS突變 ...................................... 4 四、 大腸直腸癌的治療 ................................................................... 6 第二節 Regorafenib及其抗癌機轉 ...................................................... 9 第三節 薑黃素(Curcumin)及其抗癌機轉 ..................................... 11 第四節 細胞凋亡(Apoptposis) ....................................................... 13 第五節 細胞自噬(Autophagy) ....................................................... 16 第六節 合成致死(Synthetic lethality) ............................................ 18 第二章 研究目的 .................................................................................... 21 第三章 材料與方法 ................................................................................ 23 第一節 實驗藥品與試劑 ..................................................................... 23 第二節 儀器與實驗耗材 ..................................................................... 27 第三節 實驗方法 ................................................................................. 33 一、 細胞培養繼代、解凍及保存 ................................................. 33 二、 藥物配製 ................................................................................. 36 三、 細胞存活率分析(Cell viability analysis) .......................... 37 四、 細胞週期比例分析(Cell cycle analysis) ........................... 38 五、 細胞自噬比例分析 ................................................................. 40 六、 西方墨點法(Western blot analysis) ................................... 41 七、 細胞轉染(Transfection) ..................................................... 52 八、 雙冷光活性分析(Dual-Luciferase assay) ......................... 53 九、 統計分析 ................................................................................. 54 第四章 結果............................................................................................. 55 第一節 檢測Curcumin與Regorafenib合併使用的效果 ................. 55 第二節 分析藥物合併使用後改變細胞週期與細胞自噬之情形 ..... 60 第三節 探討Curcumin與Regorafenib合併使用的相關機轉 ......... 70 第四節 探討藥物合併使用效果在HCT 116及parental HT-29細胞之差異 ................................................................................................... 76 第五節 探討藥物合併使用在HT-29 KRAS mutant inducible細胞之效果 ....................................................................................................... 79 第六節 MEK抑制劑與藥物合併使用在KRAS mutant細胞中能引發合成致死 ........................................................................................... 82 第五章 討論............................................................................................. 91 第六章 結論............................................................................................. 96 第七章 參考文獻 .................................................................................... 98 附錄 ......................................................................................................... 113

    Abdelsattar, Z. M., Wong, S. L., Regenbogen, S. E., Jomaa, D. M., Hardiman, K. M., & Hendren, S. (2016). Colorectal cancer outcomes and treatment patterns in patients too young for average-risk screening. Cancer, 122(6), 929-934. doi:10.1002/cncr.29716
    Ait Ouakrim, D., Lockett, T., Boussioutas, A., Hopper, J. L., & Jenkins, M. A. (2013). Screening participation for people at increased risk of colorectal cancer due to family history: a systematic review and meta-analysis. Fam Cancer, 12(3), 459-472. doi:10.1007/s10689-013-9658-3
    Anand, P., Sundaram, C., Jhurani, S., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin and cancer: an "old-age" disease with an "age-old" solution. Cancer Lett, 267(1), 133-164. doi:10.1016/j.canlet.2008.03.025
    Andre, T., Boni, C., Mounedji-Boudiaf, L., Navarro, M., Tabernero, J., Hickish, T., Topham, C., Zaninelli, M., Clingan, P., Bridgewater, J., Tabah-Fisch, I., de Gramont, A. (2004). Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med, 350(23), 2343-2351. doi:10.1056/NEJMoa032709
    Aran, V., Victorino, A. P., Thuler, L. C., & Ferreira, C. G. (2016). Colorectal Cancer: Epidemiology, Disease Mechanisms and Interventions to Reduce Onset and Mortality. Clin Colorectal Cancer. doi:10.1016/j.clcc.2016.02.008
    Bardelli, A., & Siena, S. (2010). Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol, 28(7), 1254-1261. doi:10.1200/JCO.2009.24.6116
    Binefa, G., Rodriguez-Moranta, F., Teule, A., & Medina-Hayas, M. (2014). Colorectal cancer: from prevention to personalized medicine. World J Gastroenterol, 20(22), 6786-6808. doi:10.3748/wjg.v20.i22.6786
    Brenner, H., Kloor, M., & Pox, C. P. (2014). Colorectal cancer. The Lancet, 383(9927), 1490-1502. doi:10.1016/s0140-6736(13)61649-9
    Bundred, N., Gardovskis, J., Jaskiewicz, J., Eglitis, J., Paramonov, V., McCormack, P., Swaisland, H., Cavallin, M., Parry, T., Carmichael, J., Dixon, J. M. (2013). Evaluation of the pharmacodynamics and pharmacokinetics of the PARP inhibitor olaparib: a phase I multicentre trial in patients scheduled for elective breast cancer surgery. Invest New Drugs, 31(4), 949-958. doi:10.1007/s10637-012-9922-7
    Burt, R., & Neklason, D. W. (2005). Genetic Testing for Inherited Colon Cancer. Gastroenterology, 128(6), 1696-1716. doi:10.1053/j.gastro.2005.03.036
    Cercek, A., & Saltz, L. (2010). Evolving treatment of advanced colorectal cancer. Curr Oncol Rep, 12(3), 153-159. doi:10.1007/s11912-010-0096-1
    Chan, M. M., Adapala, N. S., & Fong, D. (2005). Curcumin overcomes the inhibitory effect of nitric oxide on Leishmania. Parasitol Res, 96(1), 49-56. doi:10.1007/s00436-005-1323-9
    Chen, A., Xu, J., & Johnson, A. C. (2006). Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene, 25(2), 278-287. doi:10.1038/sj.onc.1209019
    Cohignac, V., Landry, M., Boczkowski, J., & Lanone, S. (2014). Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity. Nanomaterials, 4(3), 548-582. doi:10.3390/nano4030548
    Corcoran, R. B., Cheng, K. A., Hata, A. N., Faber, A. C., Ebi, H., Coffee, E. M., Greninger, P., Brown, R. D., Godfrey, J. T., Cohoon, T. J., Song, Y., Lifshits, E., Hung, K. E., Shioda, T., Dias-Santagata, D., Singh, A., Settleman, J., Benes, C. H., Mino-Kenudson, M., Wong, K. K., Engelman, J. A. (2013). Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell, 23(1), 121-128. doi:10.1016/j.ccr.2012.11.007
    Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J., & Der, C. J. (2014). Drugging the undruggable RAS: Mission possible? Nat Rev Drug Discov, 13(11), 828-851. doi:10.1038/nrd4389
    Cruz–Correa, M., Shoskes, D. A., Sanchez, P., Zhao, R., Hylind, L. M., Wexner, S. D., & Giardiello, F. M. Combination Treatment With Curcumin and Quercetin of Adenomas in Familial Adenomatous Polyposis. Clinical Gastroenterology and Hepatology, 4(8), 1035-1038. doi:10.1016/j.cgh.2006.03.020
    Davies, R. J., Miller, R., & Coleman, N. (2005). Colorectal cancer screening: prospects for molecular stool analysis. Nature Reviews Cancer, 5(3), 199-209. doi:10.1038/nrc1569
    de Castro Carpeno, J., & Belda-Iniesta, C. (2013). KRAS mutant NSCLC, a new opportunity for the synthetic lethality therapeutic approach. Transl Lung Cancer Res, 2(2), 142-151. doi:10.3978/j.issn.2218-6751.2013.02.07
    Degenhardt, Y., & Lampkin, T. (2010). Targeting Polo-like kinase in cancer therapy. Clin Cancer Res, 16(2), 384-389. doi:10.1158/1078-0432.ccr-09-1380
    Dickson, M. A., Tap, W. D., Keohan, M. L., D'Angelo, S. P., Gounder, M. M., Antonescu, C. R., Landa, J., Qin, L. X., Rathbone, D. D., Condy, M. M., Ustoyev, Y., Crago, A. M., Singer, S., Schwartz, G. K. (2013). Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol, 31(16), 2024-2028. doi:10.1200/jco.2012.46.5476
    Dikshit, M., Rastogi, L., Shukla, R., & Srimal, R. C. (1995). Prevention of ischaemia-induced biochemical changes by curcumin & quinidine in the cat heart. Indian J Med Res, 101, 31-35.
    Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer, 3(1), 11-22. doi:10.1038/nrc969
    Downward, J. (2015). RAS Synthetic Lethal Screens Revisited: Still Seeking the Elusive Prize? Clin Cancer Res, 21(8), 1802-1809. doi:10.1158/1078-0432.CCR-14-2180
    Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol, 35(4), 495-516. doi:10.1080/01926230701320337
    Epstein, J., Sanderson, I. R., & Macdonald, T. T. (2010). Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies. Br J Nutr, 103(11), 1545-1557. doi:10.1017/S0007114509993667
    Fang, B. (2014). Development of synthetic lethality anticancer therapeutics. J Med Chem, 57(19), 7859-7873. doi:10.1021/jm500415t
    Gewirtz, D. A. (2014). The four faces of autophagy: implications for cancer therapy. Cancer Res, 74(3), 647-651. doi:10.1158/0008-5472.CAN-13-2966
    Golombick, T., Diamond, T. H., Manoharan, A., & Ramakrishna, R. (2012). Monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and curcumin: a randomized, double-blind placebo-controlled cross-over 4g study and an open-label 8g extension study. Am J Hematol, 87(5), 455-460. doi:10.1002/ajh.23159
    Gonzalez, C. A., & Riboli, E. (2010). Diet and cancer prevention: Contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Cancer, 46(14), 2555-2562. doi:10.1016/j.ejca.2010.07.025
    Grothey, A., Cutsem, E. V., Sobrero, A., Siena, S., Falcone, A., Ychou, M., Humblet, Y., Bouché, O., Mineur, L., Barone, C., Adenis, A., Tabernero, J., Yoshino, T., Lenz, H., Goldberg, R., Sargent, D., Cihon, F., Cupit, L., Wagner, A., Laurent, D. (2013). Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. The Lancet, 381(9863), 303-312. doi:10.1016/s0140-6736(12)61900-x
    Guo, L. D., Chen, X. J., Hu, Y. H., Yu, Z. J., Wang, D., & Liu, J. Z. (2013). Curcumin inhibits proliferation and induces apoptosis of human colorectal cancer cells by activating the mitochondria apoptotic pathway. Phytother Res, 27(3), 422-430. doi:10.1002/ptr.4731
    Haggar, F. A., & Boushey, R. P. (2009). Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg, 22(4), 191-197. doi:10.1055/s-0029-1242458
    He, C., & Klionsky, D. J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet, 43, 67-93. doi:10.1146/annurev-genet-102808-114910
    He, Z. Y., Shi, C. B., Wen, H., Li, F. L., Wang, B. L., & Wang, J. (2011). Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Invest, 29(3), 208-213. doi:10.3109/07357907.2010.550592
    Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature, 407(6805), 770-776. doi:10.1038/35037710
    Henrikson, N. B., Webber, E. M., Goddard, K. A., Scrol, A., Piper, M., Williams, M. S., Zallen, D. T., Calonge, N., Ganiats, T. G., Janssens, A. C., Zauber, A., Lansdorp-Vogelaar, I., van Ballegooijen, M., Whitlock, E. P. (2015). Family history and the natural history of colorectal cancer: systematic review. Genet Med, 17(9), 702-712. doi:10.1038/gim.2014.188
    Herr, I., & Debatin, K. M. (2001). Cellular stress response and apoptosis in cancer therapy. Blood, 98(9), 2603-2614.
    Igney, F. H., & Krammer, P. H. (2002). Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer, 2(4), 277-288. doi:10.1038/nrc776
    Jung, C. H., Ro, S. H., Cao, J., Otto, N. M., & Kim, D. H. (2010). mTOR regulation of autophagy. FEBS Lett, 584(7), 1287-1295. doi:10.1016/j.febslet.2010.01.017
    Kaelin, W. G., Jr. (2005). The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer, 5(9), 689-698. doi:10.1038/nrc1691
    Khan, G., Moss, R. A., Braiteh, F., & Saltzman, M. (2014). Proactive strategies for regorafenib in metastatic colorectal cancer: implications for optimal patient management. Cancer Manag Res, 6, 93-103. doi:10.2147/CMAR.S52217
    Kim, M. S., Lee, J., & Sidransky, D. (2010). DNA methylation markers in colorectal cancer. Cancer Metastasis Rev, 29(1), 181-206. doi:10.1007/s10555-010-9207-6
    Knickelbein, K., & Zhang, L. (2015). Mutant KRAS as a critical determinant of the therapeutic response of colorectal cancer. Genes Dis, 2(1), 4-12. doi:10.1016/j.gendis.2014.10.002
    Kobayashi, S., Nantz, R., Kitamura, T., Higashikubo, R., & Horikoshi, N. (2005). Combined inhibition of extracellular signal-regulated kinases and HSP90 sensitizes human colon carcinoma cells to ionizing radiation. Oncogene, 24(18), 3011-3019. doi:10.1038/sj.onc.1208508
    Krishnamoorthy, S. K., Relias, V., Sebastian, S., Jayaraman, V., & Saif, M. W. (2015). Management of regorafenib-related toxicities: a review. Therap Adv Gastroenterol, 8(5), 285-297. doi:10.1177/1756283x15580743
    Lamba, S., Russo, M., Sun, C., Lazzari, L., Cancelliere, C., Grernrum, W., Lieftink, C., Bernards, R., Di Nicolantonio, F., Bardelli, A. (2014). RAF suppression synergizes with MEK inhibition in KRAS mutant cancer cells. Cell Rep, 8(5), 1475-1483. doi:10.1016/j.celrep.2014.07.033
    Levine, B. (2007). Cell biology: autophagy and cancer. Nature, 446(7137), 745-747. doi:10.1038/446745a
    Lim, T. G., Lee, S. Y., Huang, Z., Lim do, Y., Chen, H., Jung, S. K., Bode, A. M., Lee, K. W., Dong, Z. (2014). Curcumin suppresses proliferation of colon cancer cells by targeting CDK2. Cancer Prev Res (Phila), 7(4), 466-474. doi:10.1158/1940-6207.CAPR-13-0387
    Lord, C. J., Tutt, A. N., & Ashworth, A. (2015). Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med, 66, 455-470. doi:10.1146/annurev-med-050913-022545
    MacFarlane, M., & Williams, A. C. (2004). Apoptosis and disease: a life or death decision. EMBO reports, 5(7), 674-678. doi:10.1038/sj.embor.7400191
    McLellan, B., Ciardiello, F., Lacouture, M. E., Segaert, S., & Van Cutsem, E. (2015). Regorafenib-associated hand-foot skin reaction: practical advice on diagnosis, prevention, and management. Ann Oncol, 26(10), 2017-2026. doi:10.1093/annonc/mdv244
    McLornan, D. P., List, A., & Mufti, G. J. (2014). Applying synthetic lethality for the selective targeting of cancer. N Engl J Med, 371(18), 1725-1735. doi:10.1056/NEJMra1407390
    Moreau, L. C., Rajan, R., Thirlwell, M. P., & Alcindor, T. (2013). Response to chemotherapy in metastatic colorectal cancer after exposure to oxaliplatin in the adjuvant setting. Anticancer Res, 33(4), 1765-1768.
    Nijman, S. M. (2011). Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett, 585(1), 1-6. doi:10.1016/j.febslet.2010.11.024
    Nishida, K., Yamaguchi, O., & Otsu, K. (2008). Crosstalk between autophagy and apoptosis in heart disease. Circ Res, 103(4), 343-351. doi:10.1161/CIRCRESAHA.108.175448
    Nistal, E., Fernandez-Fernandez, N., Vivas, S., & Olcoz, J. L. (2015). Factors Determining Colorectal Cancer: The Role of the Intestinal Microbiota. Front Oncol, 5, 220. doi:10.3389/fonc.2015.00220
    Ogier-Denis, E., Pattingre, S., El Benna, J., & Codogno, P. (2000). Erk1/2-dependent Phosphorylation of G -interacting Protein Stimulates Its GTPase Accelerating Activity and Autophagy in Human Colon Cancer Cells. Journal of Biological Chemistry, 275(50), 39090-39095. doi:10.1074/jbc.M006198200
    Overton, L. C., & Heinrich, M. C. (2014). Regorafenib for treatment of advanced gastrointestinal stromal tumors. Expert Opin Pharmacother, 15(4), 549-558. doi:10.1517/14656566.2014.877888
    Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., Packer, M., Schneider, M. D., Levine, B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 122(6), 927-939. doi:10.1016/j.cell.2005.07.002
    Peltomaki, P. (2001). Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet, 10(7), 735-740.
    Prenen, H., Tejpar, S., & Van Cutsem, E. (2010). New strategies for treatment of KRAS mutant metastatic colorectal cancer. Clin Cancer Res, 16(11), 2921-2926. doi:10.1158/1078-0432.CCR-09-2029
    Pylayeva-Gupta, Y., Grabocka, E., & Bar-Sagi, D. (2011). RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer, 11(11), 761-774. doi:10.1038/nrc3106
    Ravindran, J., Prasad, S., & Aggarwal, B. B. (2009). Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J, 11(3), 495-510. doi:10.1208/s12248-009-9128-x
    Rudin, C. M., & Thompson, C. B. (1997). Apoptosis and disease: regulation and clinical relevance of programmed cell death. Annu Rev Med, 48, 267-281. doi:10.1146/annurev.med.48.1.267
    Sanz-Garcia, E., Grasselli, J., Argiles, G., Elez, M. E., & Tabernero, J. (2016). Current and advancing treatments for metastatic colorectal cancer. Expert Opin Biol Ther, 16(1), 93-110. doi:10.1517/14712598.2016.1108405
    Sartore-Bianchi, A., Zeppellini, A., Amatu, A., Ricotta, R., Bencardino, K., & Siena, S. (2014). Regorafenib in metastatic colorectal cancer. Expert Rev Anticancer Ther, 14(3), 255-265. doi:10.1586/14737140.2014.894887
    Schmieder, R., Hoffmann, J., Becker, M., Bhargava, A., Muller, T., Kahmann, N., Ellinghaus, P., Adams, R., Rosenthal, A., Thierauch, K. H., Scholz, A., Wilhelm, S. M., Zopf, D. (2014). Regorafenib (BAY 73-4506): antitumor and antimetastatic activities in preclinical models of colorectal cancer. Int J Cancer, 135(6), 1487-1496. doi:10.1002/ijc.28669
    Schmoll, H. J., & Stein, A. (2014). Colorectal cancer in 2013: Towards improved drugs, combinations and patient selection. Nat Rev Clin Oncol, 11(2), 79-80. doi:10.1038/nrclinonc.2013.254
    Shahda, S., & Saif, M. W. (2013). Regorafenib: from bench to bedside in colorectal cancer. Expert Rev Clin Pharmacol, 6(3), 243-248. doi:10.1586/ecp.13.11
    Shanmugam, M. K., Rane, G., Kanchi, M. M., Arfuso, F., Chinnathambi, A., Zayed, M. E., Alharbi, S. A., Tan, B. K., Kumar, A. P., Sethi, G. (2015). The multifaceted role of curcumin in cancer prevention and treatment. Molecules, 20(2), 2728-2769. doi:10.3390/molecules20022728
    Sharma, R. A., Euden, S. A., Platton, S. L., Cooke, D. N., Shafayat, A., Hewitt, H. R., Marczylo, T. H., Morgan, B., Hemingway, D., Plummer, S. M., Pirmohamed, M., Gescher, A. J., Steward, W. P. (2004). Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res, 10(20), 6847-6854. doi:10.1158/1078-0432.ccr-04-0744
    Shehzad, A., & Lee, Y. S. (2013). Molecular mechanisms of curcumin action: signal transduction. Biofactors, 39(1), 27-36. doi:10.1002/biof.1065
    Sreejayan, & Rao, M. N. (1997). Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol, 49(1), 105-107.
    Stephen, A. G., Esposito, D., Bagni, R. K., & McCormick, F. (2014). Dragging ras back in the ring. Cancer Cell, 25(3), 272-281. doi:10.1016/j.ccr.2014.02.017
    Stintzing, S. (2014). Management of colorectal cancer. F1000Prime Rep, 6, 108. doi:10.12703/P6-108
    Sui, X., Kong, N., Wang, X., Fang, Y., Hu, X., Xu, Y., Chen, W., Wang, K., Li, D., Jin, W., Lou, F., Zheng, Y., Hu, H., Gong, L., Zhou, X., Pan, H., Han, W. (2014). JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy. Sci Rep, 4, 4694. doi:10.1038/srep04694
    Sullivan, K. M., & Kozuch, P. S. (2011). Impact of KRAS Mutations on Management of Colorectal Carcinoma. Patholog Res Int, 2011, 219309. doi:10.4061/2011/219309
    Tan, C., & Du, X. (2012). KRAS mutation testing in metastatic colorectal cancer. World J Gastroenterol, 18(37), 5171-5180. doi:10.3748/wjg.v18.i37.5171
    Tan, C. P., Lu, Y. Y., Ji, L. N., & Mao, Z. W. (2014). Metallomics insights into the programmed cell death induced by metal-based anticancer compounds. Metallomics, 6(5), 978-995. doi:10.1039/c3mt00225j
    Taylor, D. P., Burt, R. W., Williams, M. S., Haug, P. J., & Cannon-Albright, L. A. (2010). Population-based family history-specific risks for colorectal cancer: a constellation approach. Gastroenterology, 138(3), 877-885. doi:10.1053/j.gastro.2009.11.044
    Taylor, R. C., Cullen, S. P., & Martin, S. J. (2008). Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol, 9(3), 231-241. doi:10.1038/nrm2312
    Temraz, S., Mukherji, D., & Shamseddine, A. (2015). Dual Inhibition of MEK and PI3K Pathway in KRAS and BRAF Mutated Colorectal Cancers. Int J Mol Sci, 16(9), 22976-22988. doi:10.3390/ijms160922976
    Tower, J. (2015). Programmed cell death in aging. Ageing Res Rev, 23(Pt A), 90-100. doi:10.1016/j.arr.2015.04.002
    Triantafillidis, J. K., Nasioulas, G., & Kosmidis, P. A. (2009). Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res, 29(7), 2727-2737.
    Venkatesan, N. (1998). Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol, 124(3), 425-427. doi:10.1038/sj.bjp.0701877
    Wang, Y., Kaiser, C. E., Frett, B., & Li, H. Y. (2013). Targeting mutant KRAS for anticancer therapeutics: a review of novel small molecule modulators. J Med Chem, 56(13), 5219-5230. doi:10.1021/jm3017706
    Wehler, T. C., Hamdi, S., Maderer, A., Graf, C., Gockel, I., Schmidtmann, I., Hainz, M., Berger, M. R., Theobald, M., Galle, P. R., Moehler, M., Schimanski, C. C. (2013). Single-agent therapy with sorafenib or 5-FU is equally effective in human colorectal cancer xenograft--no benefit of combination therapy. Int J Colorectal Dis, 28(3), 385-398. doi:10.1007/s00384-012-1551-2
    West, N. P., Hohenberger, W., Weber, K., Perrakis, A., Finan, P. J., & Quirke, P. (2010). Complete mesocolic excision with central vascular ligation produces an oncologically superior specimen compared with standard surgery for carcinoma of the colon. J Clin Oncol, 28(2), 272-278. doi:10.1200/JCO.2009.24.1448
    Westphal, D., Kluck, R. M., & Dewson, G. (2014). Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ, 21(2), 196-205. doi:10.1038/cdd.2013.139
    Wilhelm, S. M., Dumas, J., Adnane, L., Lynch, M., Carter, C. A., Schutz, G., Thierauch, K. H., Zopf, D. (2011). Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer, 129(1), 245-255. doi:10.1002/ijc.25864
    Wong, R. S. (2011). Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res, 30, 87. doi:10.1186/1756-9966-30-87
    Yan, Y., & Grothey, A. (2015). Molecular profiling in the treatment of colorectal cancer: focus on regorafenib. Onco Targets Ther, 8, 2949-2957. doi:10.2147/OTT.S79145
    Yu, Y., Kanwar, S. S., Patel, B. B., Nautiyal, J., Sarkar, F. H., & Majumdar, A. P. N. (2009). Elimination of Colon Cancer Stem-Like Cells by the Combination of Curcumin and FOLFOX. Translational Oncology, 2(4), 321-328. doi:10.1593/tlo.09193
    Yuan, C. H., Filippova, M., & Duerksen-Hughes, P. (2012). Modulation of apoptotic pathways by human papillomaviruses (HPV): mechanisms and implications for therapy. Viruses, 4(12), 3831-3850. doi:10.3390/v4123831
    Ziemke, E. K., Dosch, J. S., Maust, J. D., Shettigar, A., Sen, A., Welling, T. H., Hardiman, K. M., Sebolt-Leopold, J. S. (2016). Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy That Cotargets MEK and CDK4/6. Clin Cancer Res, 22(2), 405-414. doi:10.1158/1078-0432.CCR-15-0829

    下載圖示
    QR CODE