簡易檢索 / 詳目顯示

研究生: 洪國晉
Hung, Guo-Jin
論文名稱: 鈮摻雜二氧化鈦奈米管陣列應用於染料敏化太陽能電池之研究
Nb-doped Titanium(iv) Oxide with Nanotube Arrays for Dye-sensitized Solar Cells
指導教授: 郭金國
Kuo, Chin-Guo
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 76
中文關鍵詞: 二氧化鈦奈米管陣列陽極處理法染料敏化太陽能電池鈮摻雜
英文關鍵詞: Titanium(iv) Oxide, nanotube arrays, ATO, DSSC, Nb-doped
DOI URL: https://doi.org/10.6345/NTNU202202011
論文種類: 學術論文
相關次數: 點閱:192下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究指出,過渡金屬鈮摻雜二氧化鈦能有效提升材料之導電特性,因而在導電元件、染料敏化太陽能電池領域皆有所研究。本研究配置含鈮溶液,將其塗佈在非晶相之陽極處理二氧化鈦(Anodic Titanium(iv) Oxide, ATO)所生長之二氧化鈦(Titanium(iv) Oxide, TiO2)形成陣列式奈米管孔洞。經熱處理之後形成銳鈦礦相結構之染料敏化太陽能電池光電極,並且改變鈮摻雜之濃度,得到以5、10、15、20 μl / cm2之濃度摻雜之含鈮二氧化鈦奈米管薄膜光電極,並搭配染料光敏化劑(N719)、氧化還原對之電解質(I- / I3-),以及鍍Pt之對電極,將其四部份組成為染料敏化太陽能電池。
    本實驗探討使用不同濃度鈮摻雜之二氧化鈦奈米管薄膜作為光電極所應用的染料敏化太陽能電池對於效率之影響,探討不同製程參數所形成的含鈮二氧化鈦奈米管薄膜之表面形貌與晶體結構,其性質分析以掃瞄式電子顯微鏡(Scanning Electron Microscopy, SEM)、X光繞射分析儀(X-ray diffractometer, XRD)檢測,並以UV-Vis確認光電極的染料吸附情形。製作完成之染料敏化太陽能電池元件其性質分析以I-V curve與IPCE檢測元件之光電轉換效率以及對不同光波波段反應程度等性質。實驗結果顯示摻雜鈮之二氧化鈦奈米管薄膜比未摻雜所量測到的效率更高,然而並非濃度越高效率越好,其中以塗佈為5 μl / cm2時所製備出的元件效率提升最高,可達到49%的效率提升。

    According to the research, doping niobium to titanium dioxide can effectively enhance the conductive properties. It is used to study conductive elements and dye-sensitized solar cells (DSSC). This study prepared niobium-containing solution and placed it on amorphous Anodic Titanium(iv) Oxide (ATO). After heat treatment, ATO formed anatase phase structure, which can be used for the photoelectrode of DSSC. Trying to change the concentration of niobium doping by different parameters with 5~20 μl/cm2 niobium-containing solution. Finally, composing the DSSC with the finished product of the photoelectrode, dye sensitizer (N719), the redox couple of electrolytes (I-/I3-), and the electrode (Pt-plated FTO).
    This study is trying to discuss the affected efficiency by using different concentrations of niobium doped ATO film as the photoelectrode. To discuss the surface morphology and crystal structure of niobium doped ATO film formed by different process parameters. Among them, analyzing the properties by Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD). As the experiment progressed, UV-Vis was used to confirm the dye adsorption of the photoelectrode. Analyzing the DSSC's efficiency, Jsc, Voc, and F.F. by I-V curve. Analyzing the photoelectric conversion efficiency by IPCE. The experimental results show that the niobium doped DSSC is more efficiet, the parameter 5 μl/cm2 has the highest efficiency increased 49%.

    摘 要 i ABSTRACT ii 目次 iii 表次 vi 圖次 vii 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池 3 1.3 研究動機與目的 5 第二章 理論背景及文獻探討 7 2.1 太陽能電池的原理 7 2.1.1 光電效應 7 2.1.2 光伏效應 8 2.1.3 效率的量測 8 2.2 太陽能電池的種類 10 2.2.1 矽晶太陽能電池 10 2.2.2 化合物太陽能電池 12 2.2.3 有機物或奈米結構太陽能電池 12 2.2.4 多層結構太陽能電池 14 2.3 染料敏化太陽能電池的原理與結構 14 2.3.1 染料光敏化劑 17 2.3.2 電解質 18 2.3.3 對電極 19 2.3.4 光電極 19 2.4 多孔性二氧化鈦光電極 20 2.4.1 晶體結構 21 2.4.2 奈米結構 23 2.4.3 陽極氧化法製備二氧化鈦奈米管 25 2.4.4 正向照光與背向照光 28 2.5 過渡金屬鈮摻雜二氧化鈦材料 33 2.5.1 透明導電薄膜 35 2.5.2 鈮金屬摻雜用於染料敏化太陽能電池 35 第三章 實驗方法 37 3.1 實驗步驟圖 37 3.2 實驗材料 38 3.3 實驗步驟 39 3.3.1 試片前處理 39 3.3.2 第一次陽極氧化 40 3.3.3 以熱處理進行相轉變 42 3.3.4 鈮摻雜處理 43 3.3.5 第二次陽極氧化 45 3.3.6 奈米管陣列脫膜 45 3.3.7 奈米管陣列轉移 46 3.3.8 染料浸泡 47 3.3.9 封裝 48 3.4 實驗儀器 50 3.4.1 X-射線繞射分析 50 3.4.2 掃描式電子顯微鏡 51 3.4.3 紫外-可見分光光度法 52 3.4.4 電壓電流特性曲線分析 53 3.4.5 單波長光電轉化效率 54 第四章 實驗結果與討論 55 4.1 二氧化鈦奈米管微結構組織分析 55 4.1.1 控制反應電壓之奈米管孔徑比較 55 4.1.2 控制反應時間之奈米管管長之比較 57 4.1.3 脫膜前後側面形貌之比較 58 4.2 鈮摻雜之微結構組織比較 59 4.2.1 鈮摻雜前後之二氧化鈦薄膜微結構組織比較 59 4.2.2 震洗鈮摻雜之二氧化鈦薄膜前後表面形貌比較 61 4.2.3 不同濃度鈮摻雜之二氧化鈦薄膜形貌比較 62 4.3 染料敏化太陽能電池光電極XRD分析 63 4.4 染料敏化太陽能電池光電極UV-Vis分析 65 4.5 不同濃度鈮摻雜製成之染料敏化太陽能電池效率比較 66 4.5.1 不同濃度鈮摻雜對元件光電轉換效率之探討 66 4.5.2 不同濃度鈮摻雜對元件IPCE影響之探討 68 4.5.3 鈮摻雜對元件效率提升之分析 69 第五章 結論與未來展望 71 5.1 結論 71 5.2 未來展望 72 參考文獻 73

    [1] U.S. Energy Information Administration, International Energy Outlook 2016, USA, pp. 1-6, May 2016.
    [2] Gevorkian, P., Sustainable Energy System Engineering: The Complete Green Building Design Resource., New York, 2007.
    [3] Tsokos, K. A., Physics for the IB Diploma Full Colour., Cambridge, 1998.
    [4] 吳育任,“淺談太陽能電池的原理與應用”,臺大電機系科普系列,2014年4月號,pp.1-7,2014年。
    [5] L. Kazmerski, Best Research-Cell Efficiencies, USA, 2016.
    [6] Michael Schmela, Global Market Outlook For Solar Power / 2016 – 2020, Europe, pp.1-22, July 2016.
    [7] Brian O'Regan, Michael Grätzel., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films., Nature., 353 (6346) 737–740, 24 October 1991.
    [8] 蔡進譯,“超高效率太陽電池--從愛因斯坦的光電效應談起”,物理雙月刊,275,pp.701-719,2005年10月。
    [9] 台灣太陽光電產業協會,“矽晶太陽電池技術、成本與性能”,TPVIA2012年報告,pp.1-7,2012年。
    [10] David Halliday, Principle of Physics (9th edition), Hoboken, 2011.
    [11] 黃建榮,“有機太陽能電池技術發展”,光連雙月刊,No.111,pp.55-60,2014年5月。
    [12] NREL, High-Concentration III-V Multijunction Solar Cells, NREL website, 2016.
    [13] 郭金國、倪健嵐、蕭力彰,“染料敏化太陽能電池原理與結構”,鑄造科技,241期,pp.22-26,2009年10月。
    [14] M. Gratzel, Photoelectrochemical cells, Nature, vol. 414, pp.338-344, Nov. 2001.
    [15] Anders Hagfeldt, Dye-Sensitized Solar Cells, Chem. Rev., 110, pp.6595-6663, 2010.
    [16] Edmond Becquerel, Mémoire sur les effets électriques produits sous l'influence des rayons solaires, le 29 juillet 1939.
    [17] Kearns D., Calvin M. J., Photovoltaic Effect and Photoconductivity in Laminated Organic Systems, Chem. Phys., 29, pp.950-951, 1958.
    [18] D. C. Law et al., Future Technology Pathways of Terrestrial III-V Multijunction Solar Cells For Concentrator Photovoltaic Systems, Solar Energy Mat. Solar Cells, 94, pp.1314-1318, 2010.
    [19] Akihiko Kudo and Yugo Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38, pp.253-278, 2009.
    [20] Clifford A. Hampel, The Encyclopedia of the Chemical Elements., New York, 1968.
    [21] 張昭賢,“鈦電極工學”,北京,冶金工業出版社,2003年。
    [22] Diebold, U., The surface science of titanium dioxide., Surface science reports, 48(5), pp.53-229, 2003.
    [23] Thavasi, V., Renugopalakrishnan, V., Jose, R., & Ramakrishna, S., Controlled electron injection and transport at materials interfaces in dye sensitized solar cells., Materials Science and Engineering R, 63, pp. 81-99, 2009.
    [24] Shogo Nakade, Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1)  The Case of Solar Cells Using the I-I3- Redox Couple, J. Phys. Chem. B, 109, pp.3480-3487, 2005.
    [25] Ho Chang, Chin-Guo Kuo, and Cheng-Yi Chou, Highly-Ordered Arrays of TiO2 Thin Film for Dye-Sensitized Solar Cells Fabricated by Anodic Oxidation Process, International Journal of Precision Engineering and Manufacturing, Vol. 16, No. 7, pp.1-5, 2015.
    [26] Lu-Lin Li et al., Morphologic Characterization of Anodic Titania Nanotube Arrays forDye-Sensitized Solar Cells, Journal of the Chinese Chemical Society, 57, pp.1147-1150, 2010.
    [27] Gopal K. Mor et al., A review on highly ordered, vertically oriented TiO2nanotube arrays: Fabrication, material properties, and solar energy applications, Solar Energy Materials & Solar Cells, 90, pp.2011-2075, 2006.
    [28] Maggie Paulose et al., Backside illuminated dye-sensitized solarcells based on titania nanotube array electrodes, Nanotechnology, 17, pp.1446-1448, 2006.
    [29] Gopal K. Mor et al., Use of Highly-Ordered TiO2 NanotubeArrays in Dye-Sensitized Solar Cells, Nano Letters, vol.6, no.2, pp.215-218, 2006.
    [30] Jong Hyeok Park, Tae-Woo Lee and Man Gu Kang, Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells, Chem. Commun., 2008, pp.2867-2869, 2008.
    [31] Chen, Q., & Xu, D., Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells., The Journal of Physical Chemistry C, 113, 6310-6314, 2009.
    [32] Taro Hitosugi et al., Electronic Band Structure of Transparent Conductor: Nb-Doped Anatase TiO2, Applied Physics Express 1, 111203, pp.1-3, 2008.
    [33] S. X. Zhang et al., Growth parameter-property phase diagram for pulsed laser deposited transparent oxide conductor anatase Nb:TiO2, Appl. Phys. Lett., 91, 112113, pp.1-2, 2007.
    [34] Yutaka Furubayashi et al., A transparent metal: Nb-doped anatase TiO2, Appl. Phys. Lett., 86, 252101, pp.1-3, 2005.
    [35] Tsvetkov Nikolay, Electronic structure study of lightly Nb-doped TiO2 electrode for dye-sensitized solar cells, Energy Environ. Sci., 4, pp.1480-1486, 2011.
    [36] Shibu Joseph and Pappu Sagayaraj, A cost effective approach for developing substrate stable TiO2 nanotube arrays with tuned morphology: a comprehensive study on the role of H2O2 and anodization potential, New J. Chem., 39, 5402-5409, 2015.
    [37] Xujie Lu, Xinliang Mou et al., Improved-Performance Dye-Sensitized Solar Cells Using Nb-Doped TiO2 Electrodes: Efficient Electron Injection and Transfer, Adv. Funct. Mater., 20, 509-515, 2010.
    [38] Sharp Corporation, R&D and Intellectual Property, Recovery and Growth, Sharp Annual Report 2013, 2013.
    [39] Wenwu Liu, Hui-gang Wang et al., Titanium mesh supported TiO2 nanowire arrays/Nb-doped TiO2 nanoparticles for fully flexible dye-sensitized solar cells with improved photovoltaic properties, J. Mater. Chem. C, 4, 11118-11128, 2016.

    下載圖示
    QR CODE