研究生: |
洪國晉 Hung, Guo-Jin |
---|---|
論文名稱: |
鈮摻雜二氧化鈦奈米管陣列應用於染料敏化太陽能電池之研究 Nb-doped Titanium(iv) Oxide with Nanotube Arrays for Dye-sensitized Solar Cells |
指導教授: |
郭金國
Kuo, Chin-Guo |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 二氧化鈦 、奈米管陣列 、陽極處理法 、染料敏化太陽能電池 、鈮摻雜 |
英文關鍵詞: | Titanium(iv) Oxide, nanotube arrays, ATO, DSSC, Nb-doped |
DOI URL: | https://doi.org/10.6345/NTNU202202011 |
論文種類: | 學術論文 |
相關次數: | 點閱:192 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究指出,過渡金屬鈮摻雜二氧化鈦能有效提升材料之導電特性,因而在導電元件、染料敏化太陽能電池領域皆有所研究。本研究配置含鈮溶液,將其塗佈在非晶相之陽極處理二氧化鈦(Anodic Titanium(iv) Oxide, ATO)所生長之二氧化鈦(Titanium(iv) Oxide, TiO2)形成陣列式奈米管孔洞。經熱處理之後形成銳鈦礦相結構之染料敏化太陽能電池光電極,並且改變鈮摻雜之濃度,得到以5、10、15、20 μl / cm2之濃度摻雜之含鈮二氧化鈦奈米管薄膜光電極,並搭配染料光敏化劑(N719)、氧化還原對之電解質(I- / I3-),以及鍍Pt之對電極,將其四部份組成為染料敏化太陽能電池。
本實驗探討使用不同濃度鈮摻雜之二氧化鈦奈米管薄膜作為光電極所應用的染料敏化太陽能電池對於效率之影響,探討不同製程參數所形成的含鈮二氧化鈦奈米管薄膜之表面形貌與晶體結構,其性質分析以掃瞄式電子顯微鏡(Scanning Electron Microscopy, SEM)、X光繞射分析儀(X-ray diffractometer, XRD)檢測,並以UV-Vis確認光電極的染料吸附情形。製作完成之染料敏化太陽能電池元件其性質分析以I-V curve與IPCE檢測元件之光電轉換效率以及對不同光波波段反應程度等性質。實驗結果顯示摻雜鈮之二氧化鈦奈米管薄膜比未摻雜所量測到的效率更高,然而並非濃度越高效率越好,其中以塗佈為5 μl / cm2時所製備出的元件效率提升最高,可達到49%的效率提升。
According to the research, doping niobium to titanium dioxide can effectively enhance the conductive properties. It is used to study conductive elements and dye-sensitized solar cells (DSSC). This study prepared niobium-containing solution and placed it on amorphous Anodic Titanium(iv) Oxide (ATO). After heat treatment, ATO formed anatase phase structure, which can be used for the photoelectrode of DSSC. Trying to change the concentration of niobium doping by different parameters with 5~20 μl/cm2 niobium-containing solution. Finally, composing the DSSC with the finished product of the photoelectrode, dye sensitizer (N719), the redox couple of electrolytes (I-/I3-), and the electrode (Pt-plated FTO).
This study is trying to discuss the affected efficiency by using different concentrations of niobium doped ATO film as the photoelectrode. To discuss the surface morphology and crystal structure of niobium doped ATO film formed by different process parameters. Among them, analyzing the properties by Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD). As the experiment progressed, UV-Vis was used to confirm the dye adsorption of the photoelectrode. Analyzing the DSSC's efficiency, Jsc, Voc, and F.F. by I-V curve. Analyzing the photoelectric conversion efficiency by IPCE. The experimental results show that the niobium doped DSSC is more efficiet, the parameter 5 μl/cm2 has the highest efficiency increased 49%.
[1] U.S. Energy Information Administration, International Energy Outlook 2016, USA, pp. 1-6, May 2016.
[2] Gevorkian, P., Sustainable Energy System Engineering: The Complete Green Building Design Resource., New York, 2007.
[3] Tsokos, K. A., Physics for the IB Diploma Full Colour., Cambridge, 1998.
[4] 吳育任,“淺談太陽能電池的原理與應用”,臺大電機系科普系列,2014年4月號,pp.1-7,2014年。
[5] L. Kazmerski, Best Research-Cell Efficiencies, USA, 2016.
[6] Michael Schmela, Global Market Outlook For Solar Power / 2016 – 2020, Europe, pp.1-22, July 2016.
[7] Brian O'Regan, Michael Grätzel., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films., Nature., 353 (6346) 737–740, 24 October 1991.
[8] 蔡進譯,“超高效率太陽電池--從愛因斯坦的光電效應談起”,物理雙月刊,275,pp.701-719,2005年10月。
[9] 台灣太陽光電產業協會,“矽晶太陽電池技術、成本與性能”,TPVIA2012年報告,pp.1-7,2012年。
[10] David Halliday, Principle of Physics (9th edition), Hoboken, 2011.
[11] 黃建榮,“有機太陽能電池技術發展”,光連雙月刊,No.111,pp.55-60,2014年5月。
[12] NREL, High-Concentration III-V Multijunction Solar Cells, NREL website, 2016.
[13] 郭金國、倪健嵐、蕭力彰,“染料敏化太陽能電池原理與結構”,鑄造科技,241期,pp.22-26,2009年10月。
[14] M. Gratzel, Photoelectrochemical cells, Nature, vol. 414, pp.338-344, Nov. 2001.
[15] Anders Hagfeldt, Dye-Sensitized Solar Cells, Chem. Rev., 110, pp.6595-6663, 2010.
[16] Edmond Becquerel, Mémoire sur les effets électriques produits sous l'influence des rayons solaires, le 29 juillet 1939.
[17] Kearns D., Calvin M. J., Photovoltaic Effect and Photoconductivity in Laminated Organic Systems, Chem. Phys., 29, pp.950-951, 1958.
[18] D. C. Law et al., Future Technology Pathways of Terrestrial III-V Multijunction Solar Cells For Concentrator Photovoltaic Systems, Solar Energy Mat. Solar Cells, 94, pp.1314-1318, 2010.
[19] Akihiko Kudo and Yugo Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38, pp.253-278, 2009.
[20] Clifford A. Hampel, The Encyclopedia of the Chemical Elements., New York, 1968.
[21] 張昭賢,“鈦電極工學”,北京,冶金工業出版社,2003年。
[22] Diebold, U., The surface science of titanium dioxide., Surface science reports, 48(5), pp.53-229, 2003.
[23] Thavasi, V., Renugopalakrishnan, V., Jose, R., & Ramakrishna, S., Controlled electron injection and transport at materials interfaces in dye sensitized solar cells., Materials Science and Engineering R, 63, pp. 81-99, 2009.
[24] Shogo Nakade, Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1) The Case of Solar Cells Using the I-I3- Redox Couple, J. Phys. Chem. B, 109, pp.3480-3487, 2005.
[25] Ho Chang, Chin-Guo Kuo, and Cheng-Yi Chou, Highly-Ordered Arrays of TiO2 Thin Film for Dye-Sensitized Solar Cells Fabricated by Anodic Oxidation Process, International Journal of Precision Engineering and Manufacturing, Vol. 16, No. 7, pp.1-5, 2015.
[26] Lu-Lin Li et al., Morphologic Characterization of Anodic Titania Nanotube Arrays forDye-Sensitized Solar Cells, Journal of the Chinese Chemical Society, 57, pp.1147-1150, 2010.
[27] Gopal K. Mor et al., A review on highly ordered, vertically oriented TiO2nanotube arrays: Fabrication, material properties, and solar energy applications, Solar Energy Materials & Solar Cells, 90, pp.2011-2075, 2006.
[28] Maggie Paulose et al., Backside illuminated dye-sensitized solarcells based on titania nanotube array electrodes, Nanotechnology, 17, pp.1446-1448, 2006.
[29] Gopal K. Mor et al., Use of Highly-Ordered TiO2 NanotubeArrays in Dye-Sensitized Solar Cells, Nano Letters, vol.6, no.2, pp.215-218, 2006.
[30] Jong Hyeok Park, Tae-Woo Lee and Man Gu Kang, Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells, Chem. Commun., 2008, pp.2867-2869, 2008.
[31] Chen, Q., & Xu, D., Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells., The Journal of Physical Chemistry C, 113, 6310-6314, 2009.
[32] Taro Hitosugi et al., Electronic Band Structure of Transparent Conductor: Nb-Doped Anatase TiO2, Applied Physics Express 1, 111203, pp.1-3, 2008.
[33] S. X. Zhang et al., Growth parameter-property phase diagram for pulsed laser deposited transparent oxide conductor anatase Nb:TiO2, Appl. Phys. Lett., 91, 112113, pp.1-2, 2007.
[34] Yutaka Furubayashi et al., A transparent metal: Nb-doped anatase TiO2, Appl. Phys. Lett., 86, 252101, pp.1-3, 2005.
[35] Tsvetkov Nikolay, Electronic structure study of lightly Nb-doped TiO2 electrode for dye-sensitized solar cells, Energy Environ. Sci., 4, pp.1480-1486, 2011.
[36] Shibu Joseph and Pappu Sagayaraj, A cost effective approach for developing substrate stable TiO2 nanotube arrays with tuned morphology: a comprehensive study on the role of H2O2 and anodization potential, New J. Chem., 39, 5402-5409, 2015.
[37] Xujie Lu, Xinliang Mou et al., Improved-Performance Dye-Sensitized Solar Cells Using Nb-Doped TiO2 Electrodes: Efficient Electron Injection and Transfer, Adv. Funct. Mater., 20, 509-515, 2010.
[38] Sharp Corporation, R&D and Intellectual Property, Recovery and Growth, Sharp Annual Report 2013, 2013.
[39] Wenwu Liu, Hui-gang Wang et al., Titanium mesh supported TiO2 nanowire arrays/Nb-doped TiO2 nanoparticles for fully flexible dye-sensitized solar cells with improved photovoltaic properties, J. Mater. Chem. C, 4, 11118-11128, 2016.