簡易檢索 / 詳目顯示

研究生: 黃偉峰
Wei-Feng Huang
論文名稱: 探討三價離子摻雜於電解質BaZrO3 的導電趨勢
Investigation of Proton Conductivity for Trivalent Doped Barium Zirconates
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 111
中文關鍵詞: 鋯酸鋇電解質質子導電率
英文關鍵詞: Barium Zirconate, Electrolyte, Proton conductivity
論文種類: 學術論文
相關次數: 點閱:163下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用實驗研究不同三價摻雜金屬BaZr0.9M0.1O3-α (M3+ = Al3+、Ga3+、In3+、Y3+、La3+ 、Nd3+、 Sm3+、Gd3+、 Dy3+、Ho3+ 、Er3+)的離子導電趨勢。
    實驗先利用溶膠-凝膠法(sol-gel)加入添加物NiO並以NH4OH調控溶液pH值的方式改良合成BaZr0.9M0.1O3-α的粉末,之後在壓錠燒結高溫獲得樣品。在各種的合成變因,像是添加物的比例、pH值、改變燒結溫、增加球磨過程,有系統的測試以達到更高的密度、較大的晶粒尺寸和更好的質子導電率。分別利用Archimedes測量法、XRD、SEM、EDS鑑定樣品密度、化學成分、顯微結構和摻雜比例,進行實驗前後的樣品分析。
    BaZr0.9M0.1O3-α是質子導體藉由摻雜產生氧空穴,在含有水氣的環境下,氧空穴與水氣結合獲得質子,探討質子的傳導。實驗利用DC二電極和AC四電極的EIS在飽和水氣的氮氣下進行質子導電率的測試,測量溫度為100-700℃。探討在相同條件下,摻雜金屬對質子導電率的影響與趨勢,並進一步對各摻雜金屬以Arrhenius方程式得到activation energy與pre-exponential factors。
    實驗結果顯示質子傳導與摻雜半徑有關,較小的摻雜金屬離子有較弱的水合能且質子濃度較低,造成較低的質子傳導。而較大的摻雜金屬離子會導致A-site摻雜的問題,造成氧空穴減少,得到較差的質子導電率。最適當的摻雜金屬離子(Ho3+、Er3+、Dy3+)擁有最好的質子導電率。

    This thesis reports the trends of proton conductivity on series of trivalent cations (Al3+, Ga3+, In3+, Y3+, La3+ Nd3+ Sm3+, Gd3+, Dy3+, Ho3+ and Er3+) doped BaZrO3. The ceramic powders are initially synthesized by sol-gel method with small amount of NiO additive and pH-controlled condition and subsequently compressed to pellet sintered at higher temperature. Various synthetic parameters, such as ratios of additives, pH values, sintering temperature, ball mill processes, have been systematically examined to achieve the higher density, larger grain size and better proton conductivity. The desnity, chemical composition, microstructure and dopant ratios of samples are characterized by Archimedes measurement, XRD, SEM, EDX, respectively.
    The protonic conductivity is measured by DC 2-electrode and AC 4 electrode methods from 700–100℃ in the wet-N2 condition and further analyzed in the Arrhenius equation to determine the corresponding activation energy and pre-exponential factors for each cation-doped BaZrO3.
    The result shows that proton conductivity is radius dependent for the doped cations. Smaller trivalent cations will have weaker hydration energy and give smaller proton concentration, thus, result lower proton conductivity. On the other hand, larger cations will cause A-site doping problem and give less oxygen vacancy, therefore, show poor proton conductivity. As a result, the cations of Ho3+, Er3+ and Dy3+ with suitable radius will give the best proton conductivity.

    中文摘要 2 英文摘要 3 誌謝 5 目錄 6 圖表目錄 9 第一章 固態氧化燃料電池介紹 15 1-0 緒論 15 1-1 燃料電池 17 1-1-1 燃料電池原理 17 1-1-2 燃料電池之種類 17 1-2 固態氧化物燃料電池(SOFC) 20 1-2-1 固態氧化物燃料電池簡介 20 1-2-2 固態氧化物燃料電池組成 21 1-3 固態氧化物電解質 22 1-3-1 氧離子導體 -螢石結構 (fluorine, AO2) 24 1-3-2 質子導體 -鈣鈦礦結構 (perovskite , ABO3) 25 1-3-3 質子導體電解質傳導機制與相關研究 28 1-4 研究目的與方向 33 第二章 實驗方法 34 2-0 實驗藥品列表 34 2-1 粉末製備 36 2-1-1 甘胺酸/硝酸鹽燃燒法(Glycine - Nitrate Process , GNP)36 2-1-2 溶膠-凝膠法(sol-gel,SG) 38 2-1-2-1 Pechini 法:BaZr1-xMxO3-α 粉末的合成 38 2-1-2-2 pH 值法:BaZr1-xMxO3-α 粉末的合成 39 2-2 BaZr0.9M0.1O3-α 導電測量與分析 41 2-2-1 試片BaZr0.9M0.1O3-α 製備條件 41 2-2-2 導電測量裝置 42 2-2-3 試片密度分析 43 2-2-4 導電率分析 44 2-2-5 活化能分析 46 2-3 BaZr0.9M0.1O3-α 結構及組成分析 47 2-3-1 X 光繞射儀 (X-ray diffraction analysis,XRD) 47 2-3-2 掃描式電子顯微鏡 (Scanning Electron Microscope,SEM)48 2-3-3 能量散射光譜儀(Energy Dispersive Spectrometer,EDS) 49 第三章 結果與討論 50 3-1 實驗改良 50 3-1-1 改良動機與方式 50 3-1-2 加入添加物 54 3-1-3 調控pH 值 58 3-1-4 其他改良 61 3-2 導電趨勢 65 3-2-1 實驗動機 65 3-2-2 晶格結構分析 66 3-2-3 密度分析 72 3-2-4 元素組成與分佈分析 75 3-2-5 顯微結構分析 87 3-2-6 阻抗圖譜分析導電趨勢 94 3-2-6-1 不同金屬與不同溫度阻抗圖譜 95 3-2-6-2 總導電率活化能與A 值分析 98 3-2-6-2 Bulk 導電率活化能與A 值分析 101 第四章 結論 105 第五章 未來展望 106 文獻 107

    1. 伍永福; 赵玉萍; 彭军, 固体氧化物燃料电池(SOFC)研究现状. 中國論文科技在線 2006.
    2. 黃炳照; 鄭銘堯, 固態氧化物燃料電池之進展. 化工技術 2002, 111, 135.
    3. W. R. Grove, On Voltavic Series and the Combination of Gases by Platium, Philos. Mag, 1839, 14, 127.
    4. P. Zegers, Fuel Cell in Europe, Journal of Power Sources, 1990, 29, 133-142.
    5. Hydrogen and Fuel Cells Program, October 2006
    6. http://www.azocleantech.com/article.aspx?Articleid=70.
    7. Nernst, W., Elektrochem. 1899, 6, 41
    8. Stöver, D., Processing and properties of the ceramic conductive multilayer device solid oxide fuel cell(SOFC). Ceramics International 2004, 30, 1107
    9. S.C. Singhal, Status of solid oxide fuel cell technology, Proceedings of the 17th, Riso International Symposium on Material Science, High Temperature Elcctrochemistry, Ceramics and Metals, Roskilde, Denmark, Sept. 1996.
    10. Gross, M. D.; Vohs, J. M.; Gorte, R. J., Recent progress in SOFC anodes for direct utilization of hydrocarbons. J.Mater.Chem. 2007, 17, 3071-3077.
    11. McIntosh, S.; Gorte, R. J., Direct Hydrocarbon Solid Oxide Fuel Cells. Chem. Rev. 2004, 104, 4845-4865.
    12. Jacobson, A. J., Materials for Solid Oxide Fuel Cells. Chem. Mater. 2010, 22, 660-674.
    13. Iwahara, H.; Esaka, T.; Uchida, H.; Maeda, N., Proton conduction in sintered and its application to steam electrolysis for hydrogen production. Solid State Ionics 1981, 3-4, 359-363.
    14. Iwahara, H., Proton conducting ceramics and their applications. Solid State Ionics 1996, 9-15, 86-88.
    15. Schober, T., Applications of oxidic high-temperature proton conductors Solid State Ionics 2003, 162-163, 277-281.
    16. Kreuer, K.D., Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 1999, 125, 285-302.
    17. Malavasi, L.; Fisher, C. A. J.; Islam, M. S., Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem. Soc. Rev. 2010, 39, 4370-4387.
    18. Fergus, J. W., Doping and defect association in oxides for use in oxygen sensors. JOURNAL OF MATERIALS SCIENCE 2003, 38, 4259-4270.
    19. Fu, Y.P.; Chen, S.H.; Huang, J.J., Preparation and characterization of Ce0.8M0.2O2-δ (M = Y, Gd,Sm, Nd, La) solid electrolyte materials for solid oxide fuel cells. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2010, 35, 745-752.
    20. Islam, M. S.; Slater, P. R.; Tolchard, J. R.; Dinges, T., Doping and defect association in AZrO3 (A =Ca, Ba) and LaMO3 (M=Sc, Ga) perovskite-type ionic conductors. Dalton Trans 2004, 3061-3066.
    21. HAILE, S. M.; STANEFF, G.; RYU, K. H., Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites. JOURNAL OF MATERIALS SCIENCE 2001, 36, 1149-1160.
    22. Kreuer, K. D., PROTON-CONDUCTING OXIDES. Annu. Rev. Mater. Res 2003, 33, 333-359.
    23. Islam, M. S., Ionic transport in ABO3 perovskite oxides: a computer modelling tour. J. Mater. Chem. 2000, 10, 1027-1038.
    24. Barison, S.; Battagliarin, M.; Cavallin, T.; Doubova, L.; Fabrizio, M.; Mortalo, C.; Boldrini, S.; Malavasic, L.; Gerbas, R., High conductivity and chemical stability of BaCe1-x-yZrxYyO3d proton conductors prepared by a sol–gel method. J. Mater. Chem. 2008, 18, 5120-5128.
    25. Fabbri, E.; Pergolesi, D.; Traversa, E., Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem. Soc. Rev. 2010, 39, 4355-4369.
    26. Zuo, C.; Zha, S.; Liu, M.; Hatano, M.; Uchiyama, M., Ba(Zr0.1Ce0.7Y0.2)O3- as an Electrolyte for Low-Temperature Solid-Oxide Fuel Cells. Adv. Mater. 2006, 18, 3318-3320.
    27. Katahira, K.; Kohchi, Y.; Shimura, T.; Iwahara, H., Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 2000, 138, 91-98.
    28. Merinova, B.; Goddard, W., Proton diffusion pathways and rates in Y-doped BaZrO3 solid oxide electrolyte from quantum mechanics. THE JOURNAL OF CHEMICAL PHYSICS 2009, 130, 194707.
    29. Stokes, S. J.; Islam, M. S., Defect chemistry and proton-dopant association in BaZrO3 and BaPrO3. J.Mater.Chem. 2010, 20, 6258-6264.
    30. Kreuer, K. D.; Adams, S.; Mu¨nch, W.; Fuchs, A.; Klock, U.; Maier, J., Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics 2001, 145, 295-306.
    31. Yamazaki, Y.; Babilo, P.; Haile, S. M., Defect Chemistry of Yttrium-Doped Barium Zirconate: A Thermodynamic Analysis of Water Uptake. Chem. Mater. 2008, 20, 6352-6357.
    32. Pergolesi, D.; Fabbri, E.; D’Epifanio, A.; Bartolomeo, E. D.; Tebano, A.; Sanna, S.; Licoccia, S.; Balestrino, G.; Traversa, E., High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nature materials 2010, 9, 846-852.
    33. Ahmed, I.; Kinyanju, F. G.; Rahman, S. M. H.; Steegstra, P.; Eriksson, S. G.; Ahlbergc, E., Proton Conductivity in Mixed B-Site Doped Perovskite Oxide BaZr0.5In0.25Yb0.25O3-δ . Journal of The Electrochemical Society 2010, 157, B1819-B1824.
    34. Ricote, S.; Bonanos, N.; Caboche, G., Water vapour solubility and conductivity study of the proton conductor BaCe0.9-xZrxY0.1O3-δ. Solid State Ionics 2009, 180, 990-997.
    35. Braun, A.; Duval, S.; Ried, P.; Embs, J., Proton diffusivity in the BaZr0.9Y0.1O3-δ proton conductor. J Appl Electrochem 2009, 39, 471-475.
    36. Iguchi, F.; Nagao, Y.; Sata, N.; Yugami, H., Proton concentration in 15 mol% Y-doped BaZrO3 proton conductors prepared at various temperatures Solid State Ionics 2010.
    37. Fabbri, E.; Pergolesi, D.; Licoccia, S.; Traversa, E., Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1-xYxO3-δ fuel cell electrolytes? Solid State Ionics 2010, 181, 1043-1051.
    38. Phair, J. W.; Badwal, S. P. S., Review of proton conductors for hydrogen separation. Ionics 2006, 12, 103-115.
    39. Cheng, W., Sengupta, L., MgO-mixed Ba0.6Sr0.4TiO3 bulk ceramics and thin films for tunable microwave applications. J.Appl.Phys 2002, 92, 3941-3946.
    40. Imashuku, S.; Uda, T.; Nose, Y.; Taniguchi, G.; Ito, Y.; Awakura, Y., Dependence of Dopant Cations on Microstructure and Proton Conductivity of Barium Zirconate. Journal of The Electrochemical Society 2009, 156, B1-B8.
    41. Wu, J.; Webb, S.M.; Brennan, S.; Haile, S.M., Dopant site selectivity in BaCe0.85M0.15O3-δ by extended x-ray absorption fine structure. J.Appl.Phys. 2005, 97 , 054101.
    42. Imashuku, S.; Uda, T.; Nose, Y.; Awakura, Y., Effect of isovalent cation substitution on conductivity and microstructure of sintered yttrium-doped barium zirconate. Journal of Alloys and Compounds 2010, 490, 672-676.
    43. Islam, M.S.; Slater, P.R.; Tolchard, J.R.; Dinges, T., Doping and defect association in AZrO3 (A = Ca, Ba) and LaMO3 (M = Sc, Ga) perovskite-type ionic conductors. Dalton Trans. 2004, 1061-3066.
    44. Caetano, E.; Souza, C. d.; Muccillo, R., Properties and Applications of Perovskite Proton Conductors. Materials Research. 2010, 13, 385-394.
    45. http://www.webelements.com/
    46. Shannon, R. D., Acta Crystallogr 1976, A32, 751.
    47. J. J. Berzelius, Prog. Ann. 1825, 4, 126.
    48. V. Hlavacek, Ceram. Bull., 1991, 70, 240.
    49. He, T.; He, Q.; Wang, N., Synthesis of nano-sized YSZ powders from glycine-nitrate process and optimization of their properties. Journal of Alloys and Compounds 2005, 396, 309-315.
    50. Chick, L. A.; Pederson, L. R.; Maupin, G. D.; Bates, J. L.; Thomas, L. E.; Exarhos, G. J., Glycine-nitrate combustion synthesis of oxide ceramic powders Materials Letters 1990, 10, 6-12.
    51. Pechini, M., U.S. Patent 1967 , 3 ,697.
    52. Fabbri, E.; Pergolesi, D.; Licoccia, S.; Traversa, E., Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1-xYxO3-δ fuel cell electrolytes? Solid State Ionics 2010, 181, 1043-1051.
    53. Yamazaki, Y.; Hernandez-Sanchez, R.;Haile, S. M., High Total Proton Conductivity in Large-Grained Yttrium-Doped Barium Zirconate Chemistry of Materials, 2009, 21, 2755-2762.
    54. Huang,M. H. ,Preparation of Mg-doped lanthanum chromite for solid oxide fuel cell application, Imperial College, London, UK , 1991
    55. Macdonald, J. R.,Impedance Spectroscopy Emphasizing Solid Materials And Systems, 1987.
    56. Guo, X.; Waser, R., Progress in Materials Science, 2006, 151-210
    57. 林麗娟 , 工業材料86期 , 101-109.
    58. Iguchi, F., Sata, N., Tsurui, T. and Yugami, H., Microstructures and grain boundary conductivity of BaZr1−xYxO3 (x = 0.05, 0.10, 0.15) ceramics. Solid State Ionics, 2007, 178, 691.
    59. Babilo, P.; Haile, S. M., Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO. J. Am. Ceram. Soc., 2005, 88(9), 2362-2368.
    60. Tong, J. H.; Clark, D.; Hoban, M.; O'Hayre, R. Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ionics, 2010, 181, 496-503.
    61. Tong, J. H.; Clark, D.; Hoban, M.; O'Hayre, R. Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics. J.Mater.Chem., 2010, 20, 6333-6341.
    62. Tao, S.;Irvine,J.T.S., Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325℃. Journal of Solid State Chemistry 2007, 180, 3493-3503.
    63. Wu, J.; Li, L. P.; Espinosa, W. T. P.; Haile, S. M., Defect chemistry and transport properties of BaxCe0.85M0.15O3-δ. J. Mater. Res. 2004, 19, 2366.
    64. Imashuku,S.; Uda,T.; Awakura, Y., Sintering Properties of Trivalent Cation-Doped Barium Zirconate at 1600°C. Electrochemical and Solid-State Letters, 2007, 10(10), B175-B178.
    65. Iguchi, F.; Sata, N.; Tsurui, T.; Yugami,H., Microstructures and grain boundary of BaZr1-xYxO3 (x=0.05 , 0.10 , 0.15) ceramics. Solid State Ionics 2007, 178, 691-695.
    66. Coors, W.G., Protonic ceramics of the solid solution BaCe(x)Zr(0.8-x)Y0.2O3-α prepared by NiO-reactive sintering. Part I:fabrication and microstructure. CoorsTek report, 2010, March 18th.
    67. Wu, J.; Davies, R. A.; Islam, M. S.; Haile, S. M., Atomistic Study of Doped BaCeO3: Dopant Site-Selectivity and Cation Nonstoichiometry. Chem. Mater. 2005, 17, 846-851.
    68. Glo¨cknera, R.; Islamb, M. S.; Norbya, T., Protons and other defects in BaCeO : a computational study. Solid State Ionics 1999, 122, 145-156.
    69. Daviesa, R. A.; Islama, M. S.; Gale, J. D., Dopant and proton incorporation in perovskite-type zirconates. Solid State Ionics 1999, 126, 323-335.
    70. Pasierb, P.; M.Wierzbicka; Komornicki, S.; Rekas, M., Electrochemical impedance spectroscopy of BaCeO3 modified by Ti and Y. Journal of Power Sources 2009, 194, 31-37.

    下載圖示
    QR CODE