簡易檢索 / 詳目顯示

研究生: 余承庭
Yu, Cheng-Ting
論文名稱: 二氧化碳捕捉的分子動力學計算
Molecular Dynamics Simulations for CO2 Capture
指導教授: 蔡明剛
Tsai, Ming-Kang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 理論計算二氧化碳孔洞材料
英文關鍵詞: Theoretical calculation, CO2 adsorption, Porous organic polymers
DOI URL: http://doi.org/10.6345/NTNU201900099
論文種類: 學術論文
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CO2 的回收和再利用是減緩全球變暖的關鍵。孔洞有機聚合物被認為是能加強 CO2 再循環技術的有前途的材料之一。我們進行了第一原理模擬,以苯環衍生物的各種模型比較取代基效應與CO2,N2和H2結合能,其中以 R-NH2 以及 R-COOH 為最佳官能化候選物。我們隨後開發了力場參數來模擬CO2 / PMBE ,CO2 / PMBA 和 CO2 / PMBOA 系統,以了解這些多孔材料對CO2 捕獲的方式為何,結果我們發現了當PMBOA 和PMBA 與 CO2 作用時發生了動能傳遞的現象,並且CO2 進入相轉換的溫度也以 PMBOA > PMBA > PMBE 的順序發生,證實官能基的修飾能加強材料對於 CO2 的吸附性。

    The recycling and reuse of CO2 is the key to slowing global warming. Porous organic polymers are considered to be one of the promising materials for enhanced CO2 recycling technology. We performed a first-principle simulation to compare the model of various benzene ring derivatives with the substituent effects in the adsorption energies of CO2, N2 and H2. Among them, R-NH2 and R-COOH are the best functionalization candidates. Next, we developed force field parameters to simulate the CO2 / PMBE , CO2 / PMBA and CO2 / PMBOA systems to understand how these porous materials capture CO2. As a result, we found that kinetic energy transfer occurs when PMBOA and PMBA interact with CO2, and the temperature at which CO2 enters phase transition is in the order of PMBOA > PMBA > PMBE. It was confirmed that the modification of the functional group can enhance the CO2 absorption of materials

    中文摘要 i 英文摘要 ii 總目錄 iii 圖目錄 v 表目錄 v 第一章 緒論 1 第二章 理論與計算方法 4 §2-1 密度泛函理論(Density functional theory (DFT)) 4 §2-1-2局部密度近似法 (Local Density Approximation, LDA) 7 §2-1-3廣義梯度近似法 (Generalized Gradient Approximation, GGA) 8 §2-2 分子力學 (Molecular Mechanics, MM) 9 §2-2-1 分子動力學(Molecular Dynamic, MD) 10 §2-3 計算方法 12 §2-3-1 幾何優化 12 §2-3-2點能量(Single point energy) 13 §2-3-3 Geometric combining rules 13 §2-3-4 Gaussian 14 §2-3-5 Lammps 18 §2-3-6 分子動力學模擬 19 第三章 結果與討論 21 一 Functional 與 basis set 比較 21 二 取代基的比較 25 三 材料模型建立 28 四 利用 DFT 檢驗 Force Field 35 五 利用實驗結果檢驗 MD 計算 36 六 進行 MD 計算 38 七 動能分布探討 54 第四章 總結與未來展望 57 參考文獻 58

    1. Nutongkaew, P.; Waewsak, J.; Chaichana, T.; Gagnon, Y., Greenhouse Gases Emission of Refuse Derived Fuel-5 Production from Municipal Waste and Palm Kernel. Energy Procedia 2014, 52, 362-370.
    2. Haszeldine, R. S., Carbon Capture and Storage:How Green Can Black Be? Science 2009, 325 (25), 1647-1652.
    3. Samanta, A.; Zhao, A.; Shimizu, G. K.; Sarkar, P.; Gupta, R. J. I.; Research, E. C., Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 2011, 51 (4), 1438-1463.
    4. Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. J. C. e. r.; design, Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem. Eng Res Des 2011, 89 (9), 1609-1624.
    5. Vidali, G.; Ihm, G.; Kim, H.-Y.; Cole, M. W. J. S. S. R., Potentials of physical adsorption. Surf Sci Rep 1991, 12 (4), 135-181.
    6. Yu, C.-H.; Huang, C.-H.; Tan, C.-S. J. A. A. Q. R., A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research 2012, 12 (5), 745-769.
    7. Flaig, R. W.; Osborn Popp, T. M.; Fracaroli, A. M.; Kapustin, E. A.; Kalmutzki, M. J.; Altamimi, R. M.; Fathieh, F.; Reimer, J. A.; Yaghi, O. M., The Chemistry of CO2 Capture in an Amine-Functionalized Metal-Organic Framework under Dry and Humid Conditions. J Am Chem Soc 2017, 139 (35), 12125-12128.
    8. He, H.; Sun, F.; Ma, S.; Zhu, G., Reticular Synthesis of a Series of HKUST-like MOFs with Carbon Dioxide Capture and Separation. Inorg Chem 2016, 55 (17), 9071-6.
    9. Schoedel, A.; Ji, Z.; Yaghi, O. M. J. N. E., The role of metal–organic frameworks in a carbon-neutral energy cycle. Nature Energy 2016, 1 (4), 16034.
    10. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319, 939-943.
    11. Park, K. S.; Ni, Z.; Coˆ te´, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 2006, 103 (27), 10186–10191.
    12. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res. 2010, 43 (1), 58-67.
    13. Calik, M.; Auras, F.; Salonen, L. M.; Bader, K.; Grill, I.; Handloser, M.; Medina, D. D.; Dogru, M.; Lobermann, F.; Trauner, D.; Hartschuh, A.; Bein, T., Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction. J Am Chem Soc 2014, 136 (51), 17802-7.
    14. DeBlase, C. R.; Dichtel, W. R., Moving Beyond Boron: The Emergence of New Linkage Chemistries in Covalent Organic Frameworks. Macromolecules 2016, 49 (15), 5297-5305.
    15. Díaz, U.; Corma, A., Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coord Chem Rev 2016, 311, 85-124.
    16. Rao, M. R.; Fang, Y.; De Feyter, S.; Perepichka, D. F., Conjugated Covalent Organic Frameworks via Michael Addition-Elimination. J Am Chem Soc 2017, 139 (6), 2421-2427.
    17. Zeng, Y.; Zou, R.; Zhao, Y., Covalent Organic Frameworks for CO2 Capture. Adv Mater 2016, 28 (15), 2855-73.
    18. Samanta, P.; Chandra, P.; Ghosh, S. K., Hydroxy-functionalized hyper-cross-linked ultra-microporous organic polymers for selective CO2 capture at room temperature. Beilstein J Org Chem 2016, 12, 1981-1986.
    19. Woodward, R. T.; Stevens, L. A.; Dawson, R.; Vijayaraghavan, M.; Hasell, T.; Silverwood, I. P.; Ewing, A. V.; Ratvijitvech, T.; Exley, J. D.; Chong, S. Y.; Blanc, F.; Adams, D. J.; Kazarian, S. G.; Snape, C. E.; Drage, T. C.; Cooper, A. I., Swellable, water- and acid-tolerant polymer sponges for chemoselective carbon dioxide capture. J Am Chem Soc 2014, 136 (25), 9028-35.
    20. Koch, W. and Holthausen, M. C., A chemist's guide to density functional theory. 2nd ed.; Wiley-VCH: Weinheim ; New York, 2001.
    21. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
    22. Zhao, Y.; Truhlar, D. G., The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06 Functionals and Twelve Other Functionals, TCA. 2007. 120. 215-241
    23. Chai, J. D.; Head-Gordon, M., Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 2008, 10 (44), 6615-20.
    24. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys. 1995, 117, 1-19.
    25. Jorgensen, W. L.; Tirado-Rives, J., The OPLS Potential Functions for Proteins. EnergyMinimizations for Crystals of Cyclic Peptides and Crambin J Am Chem Soc 1988, 110 (6), 1657-1665.
    26. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J., J Am Chem Soc 1996, 118, 11225-11236.
    27. Lee, H. M.; Youn, I. S.; Saleh, M.; Lee, J. W.; Kim, K. S., Interactions of CO2 with various functional molecules. Phys Chem Chem Phys 2015, 17 (16), 10925-33.
    28. Penin, D., Dissociation constants of organic bases in aqueous solution. Butterworths, London: 1965.
    29. Park, C. M.; Sheehan, R. J. J. K. O. E. o. C. T., Phthalic acids and other benzenepolycarboxylic acids. John Wiley & Sons 2000.
    30. Huang, I. S.; Li, J. J.; Tsai, M. K., Solvation Dynamics of CO(2)(g) by Monoethanolamine at the Gas-Liquid Interface: A Molecular Mechanics Approach. Molecules 2016, 22 (1).
    31. Li, H.-C.; Chai, J.-D.; Tsai, M.-K., Assessment of dispersion-improved exchange-correlation functionals for the simulation of CO2 binding by alcoholamines. International Journal of Quantum Chemistry 2014, 114 (12), 805-812.
    32. Li, H.-C.; Tsai, M.-K., A first-principle study of CO2 binding by monoethanolamine and mono-n-propanolamine solutions. Chemical Physics 2015, 452, 9-16.
    33. Trinh, T. T.; Vlugt, T. J.; Hagg, M. B.; Bedeaux, D.; Kjelstrup, S., Selectivity and self-diffusion of CO2 and H2 in a mixture on a graphite surface. Front Chem 2013, 1, 38.

    無法下載圖示 本全文未授權公開
    QR CODE