研究生: |
陳建合 Chen, Jian-He |
---|---|
論文名稱: |
開發人類肝癌類幹細胞凋亡之中草藥 An aqueous Chinese herb medicine that activates apoptotic cell death in human liver cancer stem-like cells |
指導教授: |
方剛
Fang, Kang |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 肝細胞癌 、肝癌類幹細胞 、鴨膽子 、自我更新 、細胞凋亡 |
英文關鍵詞: | hepatocellular carcinoma, liver cancer stem-like cells, Brucea javanica, self-renewal, apoptosis |
DOI URL: | https://doi.org/10.6345/NTNU202204730 |
論文種類: | 學術論文 |
相關次數: | 點閱:219 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中草藥是一個主要天然的資源,在癌症的治療上已被廣為人所知。它的優點包括低副作用、血管新生及轉移的抑制作用。肝細胞癌,在東南亞是一個常見的人類惡性腫瘤,它們對於治療產生的抗性與其幹細胞特性緊密相關。也因肝癌幹細胞具有自我更新及轉移的能力,可針對這些標的發展出有效的癌症治療。在本篇研究中,為了評估藥物的效力,使用鴨膽子的水溶液萃取物作用於三株肝癌細胞株,分別是HepG2, Huh7與Hep3B細胞。MTT試驗和流式細胞儀分析結果顯示萃取物會引起Hep3B細胞的sub-G1細胞總數表現且隨劑量增加有效抑制其生長。然而HepG2和Huh7細胞對於這處理較不敏感。西方墨點法證明了鴨膽子引起Hep3B細胞的凋亡之機制。再者,我們更進一步證實鴨膽子降低Hep3B spheroids自我更新能力,且能夠有效抑制幹細胞標記物。此外,水萃取物經由標的表皮生長因子受體而提升Hep3B spheroids細胞的凋亡,而自我更新能力的降低與幹細胞的凋亡有關。由這些結果證明鴨膽子水溶液萃取物可分別引發monolayer及spheroid的Hep3B細胞凋亡,這樣子的結果為肝癌的治療提供一種低劑量中藥的治療方式。
The Chinese herbal medicines (CHM), as one of the main natural resources, have been known in treating cancer. Their advantages include lower side effect, and angiogenesis and metastasis inhibition. Hepatocellular carcinoma (HCC) is one of the common malignant human tumors throughout Southeast Asia. HCC resisting to therapies are closely correlated with their stemness characteristics. Liver cancer stem-like cells have the ability of self-renewal and metastasis that have become the target for developing effective cancer therapy. In this study, an aqueous extract from Brucea javanica (BJ) was used to assess their effectiveness toward human HCC cells, HepG2, Huh7 and Hep3B cells. The results of MTT assay and Flow cytometry analysis showed that the extract inhibited cell growth in dose-dependent manner by inducing sub-G1 cell population in Hep3B. While HepG2 and Huh7 cells were insensitive to treatment. Western blot analysis demonstrated that the mechanisms of BJ induced apoptotic cell death in Hep3B cells. Furthermore, we also proved that BJ attenuated the self-renewal abilities of Hep3B spheroids and suppressed the stemness markers effectively. In addition, the extract augmented apoptotic characteristics of Hep3B spheroids by targeting epidermal growth factor receptor and the reduced self-renewal capacity was associated with apoptosis of stem cells. Taken together, the results suggested that aqueous BJ extract induced apoptosis in monolayer and the spheroids of Hep3B cells that provides a new alternative in treating a subset of liver cancer.
1. Lin, S.M., Local ablation for hepatocellular carcinoma in taiwan. Liver Cancer, 2013. 2(2): p. 73-83.
2. Thomas, M.B. and A.X. Zhu, Hepatocellular carcinoma: the need for progress. J Clin Oncol, 2005. 23(13): p. 2892-9.
3. Gopalan, B., et al., Therapeutic effect of a multi-targeted imidazolium compound in hepatocellular carcinoma. Biomaterials, 2014. 35(26): p. 7479-87.
4. Farazi, P.A. and R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer, 2006. 6(9): p. 674-87.
5. Ma, L., et al., Epigenetics in hepatocellular carcinoma: an update and future therapy perspectives. World J Gastroenterol, 2014. 20(2): p. 333-45.
6. Loveman, E., et al., The clinical effectiveness and cost-effectiveness of ablative therapies in the management of liver metastases: systematic review and economic evaluation. Health Technol Assess, 2014. 18(7): p. vii-viii, 1-283.
7. Shi, J.H. and P.D. Line, Effect of liver regeneration on malignant hepatic tumors. World J Gastroenterol, 2014. 20(43): p. 16167-16177.
8. McCubrey, J.A., et al., Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Adv Biol Regul, 2015. 57: p. 75-101.
9. Jotte, R.M. and D.R. Spigel, Advances in molecular-based personalized non-small-cell lung cancer therapy: targeting epidermal growth factor receptor and mechanisms of resistance. Cancer Med, 2015.
10. Kim, H. and H.Y. Lim, Novel EGFR-TK inhibitor EKB-569 inhibits hepatocellular carcinoma cell proliferation by AKT and MAPK pathways. J Korean Med Sci, 2011. 26(12): p. 1563-8.
11. Nie, W., et al., The BIM deletion polymorphism is a prognostic biomarker of EGFR-TKIs response in NSCLC: A systematic review and meta-analysis. Oncotarget, 2015. 6(28): p. 25696-700.
12. Metzstein, M.M., G.M. Stanfield, and H.R. Horvitz, Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet, 1998. 14(10): p. 410-6.
13. Thompson, C.B., Apoptosis in the pathogenesis and treatment of disease. Science, 1995. 267(5203): p. 1456-62.
14. Fulda, S. and K.M. Debatin, Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 2006. 25(34): p. 4798-811.
15. Taylor, J.M. and M. Barry, Near death experiences: poxvirus regulation of apoptotic death. Virology, 2006. 344(1): p. 139-50.
16. Ofengeim, D., et al., N-terminally cleaved Bcl-xL mediates ischemia-induced neuronal death. Nat Neurosci, 2012. 15(4): p. 574-80.
17. Yang, J., et al., Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 1997. 275(5303): p. 1129-32.
18. Ruiz-Vela, A., G. Gonzalez de Buitrago, and A.C. Martinez, Nuclear Apaf-1 and cytochrome c redistribution following stress-induced apoptosis. FEBS Lett, 2002. 517(1-3): p. 133-8.
19. Yuan, C.H., M. Filippova, and P. Duerksen-Hughes, Modulation of apoptotic pathways by human papillomaviruses (HPV): mechanisms and implications for therapy. Viruses, 2012. 4(12): p. 3831-50.
20. Baig, S., et al., Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand? Cell Death Dis, 2016. 7: p. e2058.
21. Correia, C., et al., Emerging understanding of Bcl-2 biology: Implications for neoplastic progression and treatment. Biochim Biophys Acta, 2015. 1853(7): p. 1658-71.
22. Goldar, S., et al., Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev, 2015. 16(6): p. 2129-44.
23. Ashkenazi, A., P. Holland, and S.G. Eckhardt, Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/Tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL). J Clin Oncol, 2008. 26(21): p. 3621-30.
24. Xu, L.B. and C. Liu, Role of liver stem cells in hepatocarcinogenesis. World J Stem Cells, 2014. 6(5): p. 579-90.
25. Clarke, M.F., et al., Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res, 2006. 66(19): p. 9339-44.
26. Lapidot, T., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994. 367(6464): p. 645-8.
27. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7.
28. Bao, S., et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006. 444(7120): p. 756-60.
29. Ma, S., et al., Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology, 2007. 132(7): p. 2542-56.
30. Lee, T.K., et al., CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell, 2011. 9(1): p. 50-63.
31. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-5.
32. Dalerba, P., et al., Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A, 2007. 104(24): p. 10158-63.
33. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8.
34. Schatton, T., et al., Identification of cells initiating human melanomas. Nature, 2008. 451(7176): p. 345-9.
35. He, S., D. Nakada, and S.J. Morrison, Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol, 2009. 25: p. 377-406.
36. Zhang, Z.J. and S.L. Ma, miRNAs in breast cancer tumorigenesis (Review). Oncol Rep, 2012. 27(4): p. 903-10.
37. Jobe, E.M., A.L. McQuate, and X. Zhao, Crosstalk among Epigenetic Pathways Regulates Neurogenesis. Front Neurosci, 2012. 6: p. 59.
38. Wicha, M.S., Targeting self-renewal, an Achilles' heel of cancer stem cells. Nat Med, 2014. 20(1): p. 14-5.
39. Ahmad, S.A., R.S. Berman, and L.M. Ellis, Biology of colorectal liver metastases. Surg Oncol Clin N Am, 2003. 12(1): p. 135-50.
40. Jin, K., et al., Mechanisms regulating colorectal cancer cell metastasis into liver (Review). Oncol Lett, 2012. 3(1): p. 11-15.
41. Reymond, N., B.B. d'Agua, and A.J. Ridley, Crossing the endothelial barrier during metastasis. Nat Rev Cancer, 2013. 13(12): p. 858-70.
42. Mas, V.R., et al., Angiogenesis soluble factors as hepatocellular carcinoma noninvasive markers for monitoring hepatitis C virus cirrhotic patients awaiting liver transplantation. Transplantation, 2007. 84(10): p. 1262-71.
43. Papetti, M. and I.M. Herman, Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol, 2002. 282(5): p. C947-70.
44. Whittaker, S., R. Marais, and A.X. Zhu, The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene, 2010. 29(36): p. 4989-5005.
45. Roberts, L.R. and G.J. Gores, Emerging drugs for hepatocellular carcinoma. Expert Opin Emerg Drugs, 2006. 11(3): p. 469-87.
46. Yang, Z.F., et al., Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell, 2008. 13(2): p. 153-66.
47. Zhu, Z., et al., Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int J Cancer, 2010. 126(9): p. 2067-78.
48. Kimura, O., et al., Characterization of the epithelial cell adhesion molecule (EpCAM)+ cell population in hepatocellular carcinoma cell lines. Cancer Sci, 2010. 101(10): p. 2145-55.
49. Yang, W., et al., Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res, 2008. 68(11): p. 4287-95.
50. Haraguchi, N., et al., CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest, 2010. 120(9): p. 3326-39.
51. Yuri, S., et al., Sall4 is essential for stabilization, but not for pluripotency, of embryonic stem cells by repressing aberrant trophectoderm gene expression. Stem Cells, 2009. 27(4): p. 796-805.
52. Ji, J. and X.W. Wang, Clinical implications of cancer stem cell biology in hepatocellular carcinoma. Semin Oncol, 2012. 39(4): p. 461-72.
53. He, T.C., et al., Identification of c-MYC as a target of the APC pathway. Science, 1998. 281(5382): p. 1509-12.
54. Tetsu, O. and F. McCormick, Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 1999. 398(6726): p. 422-6.
55. Oishi, N., T. Yamashita, and S. Kaneko, Molecular biology of liver cancer stem cells. Liver Cancer, 2014. 3(2): p. 71-84.
56. Androutsellis-Theotokis, A., et al., Notch signalling regulates stem cell numbers in vitro and in vivo. Nature, 2006. 442(7104): p. 823-6.
57. Sicklick, J.K., et al., Hedgehog signaling maintains resident hepatic progenitors throughout life. Am J Physiol Gastrointest Liver Physiol, 2006. 290(5): p. G859-70.
58. Cerdan, C. and M. Bhatia, Novel roles for Notch, Wnt and Hedgehog in hematopoesis derived from human pluripotent stem cells. Int J Dev Biol, 2010. 54(6-7): p. 955-63.
59. El Khatib, M., et al., Inhibition of hedgehog signaling attenuates carcinogenesis in vitro and increases necrosis of cholangiocellular carcinoma. Hepatology, 2013. 57(3): p. 1035-45.
60. Deng, G.L., S. Zeng, and H. Shen, Chemotherapy and target therapy for hepatocellular carcinoma: new advances and challenges. World J Hepatol, 2015. 7(5): p. 787-98.
61. Lachenmayer, A., et al., Molecular approaches to treatment of hepatocellular carcinoma. Dig Liver Dis, 2010. 42 Suppl 3: p. S264-72.
62. Wilhelm, S.M., et al., BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res, 2004. 64(19): p. 7099-109.
63. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90.
64. Ames, M.M., J.S. Kovach, and J. Rubin, Pharmacological characterization of teroxirone, a triepoxide antitumor agent, in rats, rabbits, and humans. Cancer Res, 1984. 44(9): p. 4151-6.
65. Yin, S.Y., et al., Therapeutic applications of herbal medicines for cancer patients. Evid Based Complement Alternat Med, 2013. 2013: p. 302426.
66. Hu, B., et al., Preventive and therapeutic effects of Chinese herbal compounds against hepatocellular carcinoma. Molecules, 2016. 21(2).
67. Chen, M., et al., Chemical components, pharmacological properties, and nanoparticulate delivery systems of Brucea javanica. Int J Nanomedicine, 2013. 8: p. 85-92.
68. Gao, H., et al., Tumor cell selective cytotoxicity and apoptosis induction by an herbal preparation from Brucea javanica. N Am J Med Sci (Boston), 2011. 4(2): p. 62-66.
69. Ji, Z.Q., et al., Safety of Brucea javanica and cantharidin combined with chemotherapy for treatment of NSCLC patients. Asian Pac J Cancer Prev, 2014. 15(20): p. 8603-5.
70. Tan, C., et al., Matrine induction of reactive oxygen species activates p38 leading to caspase-dependent cell apoptosis in non-small cell lung cancer cells. Oncol Rep, 2013. 30(5): p. 2529-35.
71. Xiao, Z.M., et al., Effects of ethanol extract of Radix Sophorae Flavescentis on activity of colon cancer HT29 cells. Afr J Tradit Complement Altern Med, 2013. 10(5): p. 352-5.
72. Li, C., et al., Characterization, antioxidant and immunomodulatory activities of polysaccharides from Prunella vulgaris Linn. Int J Biol Macromol, 2015. 75: p. 298-305.
73. Cheung, H.Y. and Q.F. Zhang, Enhanced analysis of triterpenes, flavonoids and phenolic compounds in Prunella vulgaris L. by capillary zone electrophoresis with the addition of running buffer modifiers. J Chromatogr A, 2008. 1213(2): p. 231-8.
74. Li, C., et al., Structural characterization and immunomodulatory activity of a new heteropolysaccharide from Prunella vulgaris. Food Funct, 2015. 6(5): p. 1557-67.
75. Nakabayashi, H., et al., Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res, 1982. 42(9): p. 3858-63.
76. Knowles, B.B., C.C. Howe, and D.P. Aden, Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science, 1980. 209(4455): p. 497-9.
77. Twist, E.M., et al., Integration pattern of hepatitis B virus DNA sequences in human hepatoma cell lines. J Virol, 1981. 37(1): p. 239-43.
78. Lin, S.J., et al., IL-4 suppresses the expression and the replication of hepatitis B virus in the hepatocellular carcinoma cell line Hep3B. J Immunol, 2003. 171(9): p. 4708-16.
79. Kyrylkova, K., et al., Detection of apoptosis by TUNEL assay. Methods Mol Biol, 2012. 887: p. 41-7.
80. Inoue, K., E.A. Fry, and D.P. Frazier, Transcription factors that interact with p53 and Mdm2. Int J Cancer, 2015.
81. Akita, H., et al., MYC activates stem-like cell potential in hepatocarcinoma by a p53-dependent mechanism. Cancer Res, 2014. 74(20): p. 5903-13.
82. Qian, Y., et al., Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles. Sci Rep, 2014. 4: p. 7490.
83. Nakajima, Y., et al., Gefitinib and gemcitabine coordinately inhibited the proliferation of cholangiocarcinoma cells. Anticancer Res, 2012. 32(12): p. 5251-62.
84. Kannangai, R., F. Sahin, and M.S. Torbenson, EGFR is phosphorylated at Ty845 in hepatocellular carcinoma. Mod Pathol, 2006. 19(11): p. 1456-61.
85. Zalk, R., et al., Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. Biochem J, 2005. 386(Pt 1): p. 73-83.
86. Nur, E.K.A., et al., Nuclear translocation of cytochrome c during apoptosis. J Biol Chem, 2004. 279(24): p. 24911-4.
87. Hideshima, T. and K.C. Anderson, Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer, 2002. 2(12): p. 927-37.
88. Park, G.B., et al., ROS and ERK1/2-mediated caspase-9 activation increases XAF1 expression in dexamethasone-induced apoptosis of EBV-transformed B cells. Int J Oncol, 2013. 43(1): p. 29-38.
89. Yang, T.P., et al., Mulberry leaf polyphenol extract induced apoptosis involving regulation of adenosine monophosphate-activated protein kinase/fatty acid synthase in a p53-negative hepatocellular carcinoma cell. J Agric Food Chem, 2012. 60(27): p. 6891-8.
90. Yue, Y., et al., Suppression of human hepatocellular cancer cell proliferation by Brucea javanica oil-loaded liposomes via induction of apoptosis. Arch Med Sci, 2015. 11(4): p. 856-62.
91. Li, C.J., X. Zhang, and G.W. Fan, Updates in colorectal cancer stem cell research. J Cancer Res Ther, 2014. 10 Suppl: p. 233-9.
92. Patel, S.S., et al., Cancer stem cells and stemness markers in oral squamous cell carcinomas. Asian Pac J Cancer Prev, 2014. 15(20): p. 8549-56.
93. Hashimoto, N., et al., Cancer stem-like sphere cells induced from de-differentiated hepatocellular carcinoma-derived cell lines possess the resistance to anti-cancer drugs. BMC Cancer, 2014. 14: p. 722.
94. Yu, S.C., et al., Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett, 2008. 265(1): p. 124-34.
95. Cao, L., et al., Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol, 2011. 11: p. 71.
96. Kuroda, T., et al., Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol, 2005. 25(6): p. 2475-85.
97. Do, H.J., et al., Two potent transactivation domains in the C-terminal region of human NANOG mediate transcriptional activation in human embryonic carcinoma cells. J Cell Biochem, 2009. 106(6): p. 1079-89.
98. Golubovskaya, V.M., FAK and Nanog cross talk with p53 in cancer stem cells. Anticancer Agents Med Chem, 2013. 13(4): p. 576-80.
99. Lin, T., et al., p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol, 2005. 7(2): p. 165-71.
100. Hong, I.S., H.Y. Lee, and J.S. Nam, Cancer stem cells: the 'Achilles heel' of chemo-resistant tumors. Recent Pat Anticancer Drug Discov, 2015. 10(1): p. 2-22.
101. Ji, L., et al., Critical roles of cellular glutathione homeostasis and jnk activation in andrographolide-mediated apoptotic cell death in human hepatoma cells. Mol Carcinog, 2011. 50(8): p. 580-91.
102. Zhang, H., et al., Seed oil of Brucea javanica induces apoptotic death of acute myeloid leukemia cells via both the death receptors and the mitochondrial-related pathways. Evid Based Complement Alternat Med, 2011. 2011: p. 965016.
103. http://www.atcc.org/products/all/HB-8064.aspx
104. http://www.ncbi.nlm.nih.gov/pubmed/24573715