簡易檢索 / 詳目顯示

研究生: 周振潮
Chao, Chan-Chio
論文名稱: 天鴿颱風(2017)快速增強之模擬與渦度分析
Simulation and vorticity analysis of HATO (2017) during rapid intensification (RI)
指導教授: 簡芳菁
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 91
中文關鍵詞: 颱風數值模擬海溫敏感度快速增強
DOI URL: http://doi.org/10.6345/NTNU202100289
論文種類: 學術論文
相關次數: 點閱:143下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 天鴿(Hato)颱風於2017年8月22至23日通過南海時,其強度迅速發展達到快速增強(Rapid Intensification,RI),於23日0600 UTC登陸澳門並造成當地有史以來最嚴重的災情。本研究利用WRF模式以歐洲中期天氣預報中心(European Centre for Medium-Range Weather Forecast ; ECMWF)之ERA5全球模式為初始場,動力降尺度輸出空間解析度為3 km預報場,分析颱風內部結構與發展過程,藉以探討其RI之成因。
    結果顯示,於RI初期,慣性穩定較低觸發徑向加速,在颱風中心強迫上升運動,加上環境垂直風切減弱,建立有利環境,使對流爆發(Convective Bursts,CBs)形成。於RI發展期,加速對流爆發(w>2 m⋅s^(-1),B>0.25 m⋅s^(-2))是促進RI發展的重要角色,透過底層輻合上升與潛熱釋放,使高層暖心形成,其相對低壓又促進對流產生,產生由熱力效應所主導之正回饋,有效提高颱風的強度。於RI成熟期,慣性穩定度達到最大值後3小時裏,底層輻合再度增加,搭配中層大量的輻散作用,造成以動力效應為主導的對流,與此同時颱風強度到達峰值,受地形抬升後,颱風登陸澳門。對流分佈與垂直風切有關,上升對流主要集中在下風區,佔有面積雖少,卻完成大量的質量通量傳輸,而下沉對流則集中在上風區左側,有壓抑暖心的作用。
    此外,為瞭解海表溫度(Surface Sea Temperautre,SST)對RI的影響,本研究也進行有關海溫敏感度實驗。結果顯示,當SST降低1度時,因加速對流爆發數量減少,導致暖心無法形成,雖仍有RI發展,但高層增溫不明顯。當SST降低2度以上,對流爆發數量大量減少而沒有RI發展。因此,在本個案中高的SST有利於更多的加速對流爆發產生,其導致暖心結構的形成,所以在過程中扮演著主導角色,其數量與成熟度,將影響RI的強度。

    致謝 I 摘要 II 目錄 III 圖表目錄 V 第一章 前言 1 1.1 文獻回顧 1 第二章 個案介紹和觀測資料分析 5 2.1 天鴿颱風( HATO ) 5 2.2 綜觀環境 5 2.2.1 天氣圖 5 2.2.2 紅外線雲圖 (色調強化) 7 2.2.3 雷達回波圖 7 2.2.4 海表溫度圖 8 2.3 小結 8 第三章 資料來源與研究方法 9 3.1 資料來源 9 3.2 WRF模式簡介與設定 10 3.3 實驗設計 11 3.3.1 慣性穩定度 11 3.3.2 渦度收支方程 12 3.3.3 浮力計算與對流爆發統計 13 3.3.4 海溫敏感度測試 14 第四章 數值模擬結果 15 4.1 WRF模擬結果與觀測校驗 15 4.2 RI的演變與發展 18 4.2.1 方位角平均之時序變化 18 4.2.2 徑向平均之時序變化 20 4.3 對流爆發分析 22 4.3.1 對流爆發個數與佔有面積百分比 23 4.3.2 方位角分佈 24 4.4 渦度收支分析 25 4.5 小結 28 第五章 敏感度實驗 30 5.1 模擬結果與分析 30 5.2 對流爆發統計 31 5.3 小結 33 第六章 結論與未來展望 34 參考文獻 36 附表 39 附圖 39

    張靜、史達偉、李超,2018: 1713號颱風"天鴿"近海突變特徵及原因分析。海洋預報, Vol.35, No.2, 36–43。
    Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 2291-2312.
    Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 1573–1592.
    Chen, H., D.-L. Zhang, J. Carton, and R. Atlas, 2011: On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26, 885-901.
    Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146–162.
    Chen, X. M., Wang, Y. and Zhao, Z., 2015: Synoptic flow patterns and large-scale characteristics associated with rapidly intensifying tropical cyclones in South China Sea. Mon. Weather Rev. 143, 64–87.
    Chen, X., M. Xue, and J. Fang, 2018: Rapid intensification of Typhoon Mujigae (2015) under different sea surface temperatures: Structural changes leading to rapid intensification. J. Atmos. Sci., 75, 4313–4335.
    Eastin, M. D., W. M. Gray and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part I: General statistics. Mon. Wea. Rev., 133, 188–208.
    ──, and ──, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 208-227.
    Emanuel, K. A., 1986a: An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J. Atmos. Sci. 43, 585-604.
    Hans, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas,C.Peubey,R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes,A.Geer, L. Haimberger, S. Healy, R.J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, J.-N. Thépaut: The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. (2020) Holliday, C. R., and A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107, 1022–1034.
    Holton, J. R., and Hakim, G. J., 2012: An introduction to Dynamic Meteorology. Academic Press, 107.
    Hong, S.-Y., Y. Noh and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
    Houze, R. A., Jr., W.-C. Lee, and M. M. Bell, 2009: Convective Contribution to the Genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 2778-2800.
    Kaplan, J., and M. DeMaria, 2003: Large-sHoucale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093–1108.
    Kepert, J. D., 2017: Time and space scales in the tropical cyclone boundary layer, and the location of the eyewall updraft. J. Atmos. Sci., 74, 3305–3323.
    Lin, I.-I., C.-C. Wu, I. F. Pun, and D. S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons'intensification. Mon. Wea. Rev., 136, 3288–3306.
    McFarquhar, G. M., B. F. Jewett, M. S. Gilmore et al., 2012: Vertical velocity and microphysical distributions related to rapid intensification in a simulation of Hurricane Dennis (2005). J. Atmos. Sci., 69, 3515–3534.
    Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355–386.
    Ohno, T., and M. Satoh, 2015: On the warm core of a tropical cyclone formed near the tropopause. J. Atmos. Sci., 72, 551–571.
    Oyama, R., and A. Wada, 2019: The relationship between convective bursts and warm-core intensification in a nonhydrostatic simulation of typhoon Lionrock (2016). Mon. Wea. Rev., 147, 1557-1579.
    Paull, G., K. Menelaou, and M. K. Yau, 2017: Sensitivity of tropical cyclone intensification to axixymmetric heat source: The role of inertical stability. J. Atmos. Sci., 74, 2325-2340.
    Pun I-F, Chan JCL, Lin I-I, Chan KTF, Price JF, Ko DS, Lien C-C, Wu Y-L, Huang H-C., 2019: Rapid Intensification of Typhoon Hato (2017) over Shallow Water. Sustainability. 2019; 11(13): 3709.
    Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 3067-3077.
    Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 44–70.
    Rotunno, R., and K. Emanuel, 1987: An Air–Sea Interaction Theory for Tropical Cyclones. Part II: Evolutionary Study Using a Nonhydrostatic Axisymmetric Numerical Model. J. Atmos. Sci., 44, 542–561.
    Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687–1697.
    Tao, W. K., Simpson J. and McCumber M. 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117(1), 231-235.
    Tiedtke, M. 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800.
    Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 29–48.
    Wang, X., and Jiang, H., 2019: A 13‐year global climatology of tropical‐cyclone warm‐core structures from AIRS data. Mon. Wea. Rev., 147(3), 773–790.
    Wang, Z., 2014: Characteristics of convective processes and vertical vorticity from the tropical wave to the tropical cyclone stage in the high-resolution numerical model simulations of Tropical Cyclone Fay (2008). J. Atmos. Sci., 71, 896–915.
    William C. Skamarock and Joseph B. Klemp and Jimy Dudhia and David O. Gill and Dale M. Barker and Michael G. Duda and Xiang-yu Huang and Wei Wang and Jordan G. Powers. A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR. (2008)
    Yoshida, R., and H. Ishikawa, 2013: Environmental factors contributing to tropical cyclone genesis over the western North Pacific. Mon. Wea. Rev., 141, 451-467.

    下載圖示
    QR CODE