簡易檢索 / 詳目顯示

研究生: 黃睿揚
Huang, Jui-Yang
論文名稱: 基於分數階PID類神經網路之模型預測控制應用於寬輸入電壓範圍直流-直流轉換器
Model Predictive Control Based on Fractional-Order PID Neural Network for Wide Input Voltage Range DC-DC Converter
指導教授: 陳瑄易
Chen, Syuan-Yi
口試委員: 陳瑄易
Chen, Syuan-Yi
陳正一
Chen, Cheng-I
劉祐任
Liu, Yu-Jen
口試日期: 2024/11/08
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 124
中文關鍵詞: 轉換模式切換過渡模型預測控制分數階PID類神經網路直流-直流轉換器
英文關鍵詞: Mode Transition, Model Predictive Control, Fractional-Order PID, Neural Network, DC-DC Converter
研究方法: 實驗設計法
論文種類: 學術論文
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 提出一種模型預測控制(Model Predictive Control, MPC)系統,以模型預測控制系統結合分數階比例-積分-微分類神經網路(Fractional-Order Proportional-Integral-Derivative Neural Network, FOPIDNN)電壓控制器,應用於直流-直流轉換器,不同於多模式操作控制(Multimode Operation Control, MOC)系統,轉換器在轉換模式切換過渡時的輸出電壓能夠更平滑且穩定。首先,本研究藉由推導出轉換器電路各開關導通狀態的電流斜率,以預測下一個時刻的電感電流、電感充放電電流斜率以及功率開關之導通工作週期(Duty Cycle),並利用整數階比例-積分-微分(Proportional-Integral-Derivative, PID)電壓控制器對模型預測控制系統提供電感電流參考值做驗證,以確保模型預測控制系統能使轉換器電路之輸出電壓能快速穩定在理想電壓值。為了提高輸出功率之響應速度與穩定度,必須改良影響電感電流參考值的電壓控制器,而分數階比例-積分-微分(Fractional-Order Proportional-Integral-Derivative, FOPID)電壓控制器的控制參數更多,比起整數階PID有更高的控制靈活性,不過控制參數多同時也意味著必須花費額外的時間來試錯。因此,本研究進一步提出一FOPIDNN電壓控制器,以類神經網路(Neural Network, NN)動態調整參數的特性來提升FOPID產生電感電流參考值的精確度,實現快速響應且不受環境干擾地的輸出穩定功率。本研究首先以PSIM軟體模擬來評估所提出之方法之有效性和可行性,接著再應用於實際轉換器電路並以DSP TMS320F28335數位信號處理器實現控制系統。最後,比較四種實現控制系統,包括多模式操作控制系統、基於整數階PID之MPC控制系統、基於FOPID之MPC控制系統與本研究提出的基於FOPIDNN之MPC控制系統。結果顯示與前者方法相比,本研究所提方法應用於寬輸入電壓範圍直流-直流轉換器上,能夠更及時地補償電感電流參考值,除了輸出電壓響應速度更快,輸出電壓在轉換模式切換的過渡,平滑效果也明顯提高許多,有效輸出穩定的輸出功率。

    This paper proposes a Model Predictive Control (MPC) system for DC-DC converters, integrating a Fractional-Order Proportional-Integral-Derivative Neural Network (FOPIDNN) voltage controller. Unlike conventional Multimode Operation Control (MOC) systems, this approach ensures smoother and more stable output voltage transitions during mode switching. The proposed method involves deriving the current slopes for various switch states within the converter circuit to predict the inductor current, the inductor's charging and discharging slopes, and the duty cycle of the power switches for the next time step. A Proportional-Integral-Derivative (PID) voltage controller provides a reference inductor current to validate the MPC’s performance, ensuring the output voltage rapidly stabilizes at the desired level. To improve response speed and stability, this study enhances the voltage controller that generates the inductor current reference. The Fractional-Order PID (FOPID) voltage controller offers more control flexibility due to its additional tuning parameters compared to traditional PID controller, though these extra parameters require additional time for tuning. To address this, the study introduces a FOPIDNN voltage controller, which leverages neural network capabilities to dynamically adjust parameters, enhancing the accuracy of the inductor current reference and enabling faster response and robust power stability under varying environmental conditions. The proposed approach is first validated through simulations in PSIM, and then implemented on a real converter circuit using a DSP TMS320F28335 controller. Four control systems are compared: a MOC system with PID, an MPC system with PID, an MPC system with FOPID, and the proposed MPC system with FOPIDNN. The results demonstrate that the proposed method significantly improves inductor current reference compensation, yielding faster output voltage response and much smoother transitions during mode switching, ensuring more stable power output across a wide input voltage range.

    謝辭 i 摘要 ii ABSTRACT iv 目次 vi 表次 ix 圖次 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究目的 4 1.4 研究架構 5 第二章 降壓-升壓直流-直流轉換器介紹 7 2.1 降壓-升壓直流-直流轉換器電路架構 7 2.1.1 直流-直流轉換器電壓增益分析 8 2.1.2 直流-直流轉換器降壓模式 10 2.1.3 直流-直流轉換器升壓模式 15 2.1.4 直流-直流轉換器降壓-升壓模式 19 第三章 多模式操作控制系統設計 23 3.1 多模式操作控制原理 23 3.2 多模式操作控制系統 25 第四章 模型預測控制系統設計 29 4.1 模型預測控制系統 29 4.1.1 電感充放電斜率分析 30 4.1.2 電感電流與開關導通工作週期預測 32 4.1.3 轉換模式決策機制 34 4.1.4 基於整數階PID之模型預測控制系統設計 36 4.2 分數階微積分理論 37 4.2.1 分數階微積分定義 37 4.2.2 分數階微積分離散近似計算 39 4.3 基於分數階PID之模型預測控制系統 41 4.3.1 分數階PID控制器設計 42 4.3.2 基於分數階PID之模型預測控制系統設計 44 4.4類神經網路原理 45 4.4.1 類神經網路結構 45 4.4.2 多層感知機訓練 47 4.4.3 梯度下降法 49 4.5 基於分數階PID類神經網路之模型預測控制系統 50 4.5.1 分數階PID類神經網路控制器 51 4.5.2 基於分數階PID類神經網路之模型預測控制系統設計 54 第五章 直流-直流轉換器之控制系統模擬與比較 56 5.1 PSIM模擬軟體介紹 57 5.2多模式操作控制系統模擬結果 63 5.2.1 Case 1 64 5.2.2 Case 2 66 5.3基於整數階PID之模型預測控制系統模擬結果 68 5.3.1 Case 1 70 5.3.2 Case 2 72 5.4基於分數階PID之模型預測控制系統模擬結果 74 5.4.1 Case 1 76 5.4.2 Case 2 78 5.5基於分數階PID類神經網路之模型預測控制系統模擬結果 80 5.5.1 Case 1 82 5.5.2 Case 2 84 5.6模擬結果比較 86 第六章 直流-直流轉換器之控制系統實驗介紹與結果討論 93 6.1實驗平台之系統硬體介紹 94 6.2 多模式操作控制系統實驗結果 99 6.2.1 Case 1 99 6.2.2 Case 2 100 6.3基於整數階PID之模型預測控制系統實驗結果 101 6.3.1 Case 1 102 6.3.2 Case 2 103 6.4基於分數階PID之模型預測控制系統實驗結果 104 6.4.1 Case 1 105 6.4.2 Case 2 106 6.5基於分數階PID類神經網路之模型預測控制系統實驗結果 107 6.5.1 Case 1 108 6.5.2 Case 2 109 6.6實驗結果比較 110 第七章 結論與未來展望 117 7.1結論 117 7.2未來展望 118 參考文獻 119

    [1] S. K. Mazumder, “An overview of photonic power electronic devices, ” IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6562-6574, Sept. 2016.
    [2] B. Babes, A. Boutaghane, N. Hamouda, and M. Mezaache, “Design of a robust voltage controller for a DC-DC buck converter using fractional-order terminal sliding mode control strategy, ” 2019 International Conference on Advanced Electrical Engineering (ICAEE), pp. 1–6, 2019.
    [3] A. E. Aroudi, B. A. Martinez-Tribiño, J. Calvente, A. Cid-Pastor, and L. Martínez-Salamero, “Sliding-mode control of a boost converter feeding a buck converter operating as a constant power load, ” 2017 International Conference on Green Energy Conversion Systems (GECS), pp. 1–7, 2017.
    [4] A. Emad, A. Awada, E. Radwan, and N. Mutasim, “Robust sliding mode controller for buck DC converter in off-grid applications, ” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 5, pp. 2425–2433, 2022.
    [5] A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and Plug-In hybrid electric vehicles: state of the art,” IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2806-2814, July 2010.
    [6] P. Magne, P. Liu, B. Bilgin, and A. Emadi, “Investigation of impact of number of phases in interleaved DC-DC boost converter,” 2015 IEEE Transportation Electrification Conference and Expo (ITEC), 2015, pp. 1-6.
    [7] S. Piróg and R. Stala, “DC-DC boost converter with high voltage gain and a low number of switches in multisection switched capacitor topology,” Archives of Electrical Engineering, vol. 67, no. 4, pp. 617-627, 2018.
    [8] H. S. Lee and J. J. Yun, “High-efficiency bidirectional buck–boost converter for photovoltaic and energy storage systems in a smart grid,” IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4316-4328, May 2019.
    [9] H. Komurcugil, N. Guler and S. Bayhan, “Lyapunov function based control strategy for four-switch buck boost DC-DC converters,” 2022 IEEE 31st Internation Symposium on Industrial Electronics (ISIE), Anchorage, AK, USA, 2022, pp. 546-551..
    [10] X. Liu, S. Hou and M. Fang, “A simple seamless switching strategy for four-switch buck-boost converter,” 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia), Chengdu, China, 2024, pp. 2711-2715.
    [11] Y. J. Lee, A. Khaligh, and A. Emadi, “A compensation technique for smooth transitions in a noninverting buck–boost converter,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1002–1015, Apr. 2009.
    [12] X. Ren, X. Ruan, H. Qian, M. Li, and Q. Chen, “Three-mode dualfrequency two-edge modulation scheme for four-switch buck–boost converter,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 499–509,Feb. 2009.
    [13] H. Komurcugil, “Sliding mode control strategy with maximized existence region for DC-DC buck converters,” Int. Trans. Electr. Energy Syst., vol. 31, no. 3, pp. 1–14, 2021.
    [14] C. Yfoulis, D. Giaouris, F. Stergiopoulos, C. Ziogou, S. Voutetakis, and S. Papadopoulou, “Optimal switching lyapunov-based control of a boost DC-DC converter,” 2015 23rd Mediterr. Conf. Control Autom. MED 2015 Conf. Proc., pp. 304–309, 2015.
    [15] Q. Ullah, X. Wu and U. Saleem, “Current controlled robust four-switch buck-boost DC-DC converter,” 2021 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), pp. 1-6, 2021.
    [16] X. Li, Y. Liu and Y. Xue, “Four-switch buck–boost converter based on model predictive control with smooth mode transition capability,” IEEE Trans. Ind. Electron., vol. 68, no. 10, pp. 9058-9069, Oct. 2021.
    [17] Y. Bai, S. Hu, Z. Yang, Z. Zhu, and Y. Zhang, “Model predictive control for four-switch buck-boost converter based on tuning-free cost function with smooth mode transition,” IEEE J. Emerg. Sel. Top. Power Electron, vol. 6777, no. c, pp. 1–1, 2021.
    [18] H. Komurcugil, S. Bayhan, N. Guler and R. Guzman, “Passivity based control of four-switch buck-boost DC-DC converter without operation mode detection, ” IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 2022, pp. 1-6.
    [19] K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design,and technology,” IEEE Trans. Control Syst. Technol., vol. 13, no. 4, pp. 559–576, Jul. 2005.
    [20] D. S. Acharya, S. K. Mishra, S. K. Swain and S. Ghosh, “Real-time implementation of fractional-order PID controller for magnetic levitation plant with time delay, ” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-11, 2022.
    [21] F. Meng, S. Liu and K. Liu, “Design of an optimal fractional order pid for constant tension control system,” IEEE Access, vol. 8, pp. 58933-58939, 2020.
    [22] B. B. Alagoz, F. N. Deniz, C. Keles, and N. Tan, ‘‘Disturbance rejection performance analyses of closed loop control systems by reference to disturbance ratio,’’ ISA Trans., vol. 55, pp. 63–71, Mar. 2015.
    [23] B. B. Alagoz, A. Tepljakov, C. Yeroglu, E. Gonzalez, S. H. HosseinNia, and E. Petlenkov, “A numerical study for plantindependent evaluation of fractional-order PID controller performance,” IFAC-PapersOnLine, vol. 51, no. 4, pp. 539–544, 2018.
    [24] P. Sopasakis, H. Sarimveis, P. Macheras, and A. Dokoumetzidis, “Fractional calculus in pharmacokinetics,” J. Pharmacokinetics Pharmacodyn., vol. 45, no. 1, pp. 107–125, 2018.
    [25] M. Tenoutit, N. Maamri, and J. Trigeassou, “An output feedback approach to the design of robust fractional PI and PID controllers,’’ Proc. World Congr. IFAC, Milan, Italy, 2011, pp. 12568–12574.
    [26] J. Ding, M. Wu and M. Xiao, “Nonlinear decoupling control with PIλ Dμ neural network for MIMO systems,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 6, pp. 8715-8722, June 2024.
    [27] W. LI, B. NIE, M.HUANG, “The design of fractional order PIαDβcontroller based on neural network,” Proceedings of the 2010 International Conference on Information Technology and Scientific Management, 2010, pp. 20-21.
    [28] B.SUN, “Multimode control for a four-switch buck-boost converter,” Analog Des. J. Power, 2019, pp.1-6.
    [29] S. Y. Chen, B. C. Yang, T. A. Pu, C. H. Chang, and R. C. Lin, “Active current sharing of a parallel DC-DC converters system using bat algorithm optimized two-DOF PID control,” IEEE Access, vol. 7, pp. 84757-84769, 2019.
    [30] 林芮慶,基於交叉耦合電壓下降法之最佳化鋰電-超級電容混合電能管理系統,國立臺灣師範大學電機工程學系,臺北,2020
    [31] M. Orellana, S. Petibon, B. Estibals and C. Alonso, “Four switch buck-boost converter for photovoltaic DC-DC power applications, ” IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 2010, pp. 469-474.
    [32] Z. Zhou, H. Li and X. Wu, “A constant frequency ZVS control system for the four-switch buck–boost DC-DC converter with reduced inductor current,” IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 5996-6003, July 2019.
    [33] Q. Liu, Q. Qian, M. Zheng, S. Xu, W. Sun and T. Wang, “An improved quadrangle control method for four-switch buck-boost converter with reduced loss and decoupling strategy,” IEEE Transactions on Power Electronics, vol. 36, no. 9, pp. 10827-10841, Sept. 2021.
    [34] 羅祥瑜,基於強化式學習之複合電力電動機車能量管理系統,國立臺灣師範大學電機工程學系,臺北,2022
    [35] K. D. Kim, H. M. Lee, S. W. Hong, and G. H. Cho, “A noninverting buck–boost converter with state-based current control for li-ion battery management in mobile applications,” IEEE Trans. Ind. Electron, vol. 66, no. 12, pp. 9623–9627, Dec. 2019.
    [36] S. Seo and H. H. Choi, “Digital implementation of fractional order PID-type controller for boost DC-DC converter,” IEEE Access, vol. 7, pp. 142652-142662, 2019.
    [37] Y. J. Lee, A. Khaligh, and A. Emadi, “A compensation technique for smooth transitions in a noninverting buck–boost converter,” 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, 2009, pp. 608-614.
    [38] X. Ren, X. Ruan, H. Qian, M. Li, and Q. Chen, “Three-mode dual-frequency two-edge modulation scheme for four-switch buck–boost converter,” IEEE Transactions on Power Electronics, vol. 24, no. 2, pp. 499–509,Feb. 2009.
    [39] M. Xiao, B. Tao, W. X. Zheng and G. Jiang, “Fractional-order PID controller synthesis for bifurcation of fractional-order small-world networks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 7, pp. 4334-4346, July 2021.
    [40] D. Wu, “Design and implement of neural network based fractional-order controller,” Journal of Dalian Jiaotong University, 2008.
    [41] 楊祐銓,應用強化式學習策略之分數階比例積分微分控制於X-Y-Y棒狀線性馬達定位平台,國立臺灣師範大學電機工程學系,臺北,2024
    [42] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, “Theory and applications of fractional differential equations,” Amsterdam, The Netherlands: Elsevier, 2006.
    [43] I. Petras, “Fractional—order feedback control of a DC motor,” J. Elect. Eng., vol. 60, no. 3, pp. 117–128, 2009.
    [44] 楊孟晨,基於最佳化分數階模糊PID控制之X-Y音圈馬達定位平台,國立臺灣師範大學電機工程學系,臺北,2019.
    [45] I. Podlubny, “Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications,” San Diego, CA: Academic, 1999.
    [46] R. Scherer, S. L. Kalla, Y. Tang, and J. Huang, “The grünwald–letnikov method for fractional differential equations,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 902-917, 2011.
    [47] I. Podlubny, “Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications,” San Diego, CA: Academic, 1999, p.204-208
    [48] B. B. Alagoz, A. Tepljakov, C. Yeroglu, E. Gonzalez, S. H. HosseinNia, and E. Petlenkov, “A numerical study for plantin-dependent evaluation of fractional-order PID controller performance,” IFAC-PapersOnLine, vol. 51, no. 4, pp. 539–544, 2018.
    [49] F. J. Lin, S. Y. Chen, L. T. Teng and H. Chu, “Recurrent functional-link-based fuzzy neural network controller with improved particle swarm optimization for a linear synchronous motor drive,” IEEE Transactions on Magnetics, vol. 45, no. 8, pp. 3151-3165, Aug. 2009.

    無法下載圖示 電子全文延後公開
    2029/11/22
    QR CODE