簡易檢索 / 詳目顯示

研究生: 王振銓
Russell Ong
論文名稱: Anderson Localization in a Bose-Einstein Condensate with Finite Range of Interaction
Anderson Localization in a Bose-Einstein Condensate with Finite Range of Interaction
指導教授: 吳文欽
Wu, Wen-Chin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 73
中文關鍵詞: Ryberg-dressed BECBlockade radiusDisorder potentialLocalizationHealing length
英文關鍵詞: Ryberg-dressed BEC, Blockade radius, Disorder potential, Localization, Healing length
DOI URL: http://doi.org/10.6345/THE.NTNU.DP.002.2019.B04
論文種類: 學術論文
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The emergence of Anderson localization (AL) has been well studied both theoretically and experimentally in zero-range (or contact) interacting Bose-Einstein condensates (BEC). In this thesis, we theoretically study the expansion of an initially confined 1D Rydberg-dressed BEC in a weak random potential in which the range of the interaction, the blockade radius Rc, is tunable. The localization is studied where the zero-range limit (Rc →0) healing length ξ0 is set to be fixed and exceed the disorder correlation length σD. It is found that when Rc ≤ lc, in the short-range superfluid phase (SF) [lc ≃ 1.7 ξ0 is the critical range for the SF–supersolid (SS)transition], exponential localization occurs. In the opposite long-range SS phase, Rc> lc, it yields Gaussian localization. We have verified the results by numerically simulating the oscillating Rydberg-dressed BEC in a weak random potential.

    Abstract 2 Declaration 3 Acknowledgement 4 Contents 8 Chapter 1. Introduction 10 1.1 Historical overview 10 1.2 Motivation of the thesis 13 1.3 Overview of the thesis 15 Chapter 2. Literature review 2.1 Disorder potential 16 2.2 Disorder induced dissipation in zero-range interacting system 19 2.3 Gross-Pitaevskii equation (GPE) 21 2.4 Rydberg-dressed BEC 23 2.5 Anderson Localization (AL) in ultracold gases 25 2.5.1 AL in speckle pattern potential 27 2.5.2 AL in quasiperiodic bichromatic lattice potential 28 Chapter 3. Simulation of 1D Rydberg-dressed BEC with disorder potential 3.1 Method of simulating non-local GPE 30 3.1.1 Ground state 30 3.1.2 Time-evolution state 30 3.2 Dimensionless non-local GPE 31 3.3 Criteria for simulation 32 Chapter 4. Results and discussions 4.1 Zero-range interacting BEC 34 4.1.1 Temporal density maxima and center-of-mass of an oscillating Condensate 34 4.1.2 Localized density profile 36 4.2 Long-range interacting BEC: superfluid Phase 38 4.2.1 Ground state density profile 38 4.2.2 Localized density profile 39 4.3 Long-range interacting BEC: supersolid Phase 40 4.3.1 Ground state density profile 40 4.3.2 Localized density profile 41 Chapter 5. Conclusions and future directions 5.1 Conclusions 43 5.2 Future directions 43 References 44 Appendix A: Derivation for a BEC with zero-range interaction 52 Appendix B: Healing length of the long-range interacting system 60 Appendix C: Scaling theory for long-range interacting 63 Appendix D: Determination of critical range of lc 69 Appendix E. Derivation of Gaussian localized density profile 72

    [1] Cornell, E. A. & Wieman, C. E. (2002) Nobel Lecture: Bose-Einstein condensation in a dilute gas: the first 70 years and some recent experiments. Review of Modern Physics, 74, 875-893.
    [2] Bose, S. N. (1924) Plancks gesetz und Lichtquantenhypothese. Zeitsshrift fur Physik, 26, 178-181.
    [3] Einstein, A. (1925) Quantentheorie de Einatomigen Idealen Gases. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1, 3-14.
    [4] Thorndike, A. S. & Evans, J. (2007) Quantum Mechanics at the Crossroads: New Perspectives from history, Philosophy, and Physics. Springer, Berlin.
    [5] Kapitza, P. (1938) Viscosity of Liquid Helium Below the λ-point. Nature, 141, 74.
    [6] Allen, J. F. & Misener, A.D. (1938) Flow of Liquid Helium II. Nature, 171, 75.
    [7] London, F. (1938) The λ-phenomenon of Liquid Helium and the Bose-Einstein Degeneracy. Nature, 141, 643-644.
    [8] Landau, L. (1941) Theory of the Superfluidity of Helium II. Physical Review, 60, 356-358.
    [9] Bogoliubov, N. (1946) On the Theory of Superfluidity. Journal of Physics, 11, 23-32.
    [10] Penrose, L. & Onsager, L. (1956) Bose-Einstein Condensation and Liquid Helium. Physical Review, 104, 576-584.
    [11] Henshaw, D. G. & Woods, A.D. B. (1960) Modes of Atomic Motions in Liquid Helium by Inelastic Scattering of Neutrons. Physical Review, 121, 1266-1274.
    [12] Palevsky, H., Otnes, K., & Larsson, K.E. (1958) Excitation of Rotons in Helium II by Cold Neutrons. Physical Review, 112, 11-18.
    [13] Hohenberg, P.C. & Martin, P. C. (1965) Microscopic Theory of Superfluid Helium. Annals of Physics, 281, 636-705.
    [14] Hecht, C.E. (1959) The Possible Superfluid Behaviour of Hydrogen Atom Gases and Liquids. Physica, 25, 1159-1161.
    [15] Pitaevskii, L. & Stringari S. (2003) Bose-Einstein Condensation. Oxford University Press, Oxford.
    [16] Fallani, L. & Inguscio, M. (2013) Atomic Physics: Precise Measurements and Ultracold Matter. Oxford University Press, Oxford.
    [17] Stwalley, W. C. & Nosanow, L. H. (1976) Possible “New” Quantum Systems. Physical Review Letters, 36, 910-913.
    [18] Kleppner, D., Fried, D. G., Killian, T. C., Willmann, L., Landhuis, D., Moss, S. C., & Greytak, T. J. (1998) Bose-Einstein Condensation of Atomic Hydrogen. Physical Review Letters, 81, 3811-3814.
    [19] Landini, M., Roy, S., Roati, G., Simoni, A., Inguscio, M., Modugno, G., & Fattori, M. (2012) Direct Evaporative Cooling of 39K Atoms to Bose-Einstein Condensation. Physical Review A, 86, 033421.
    [20] Sugawa, S., Yamazaki, R., Taie, S., & Takashi, Y. (2011) Bose-Einstein Condensate in Gases of Rare Atomic Species. Physical Review A, 84, 011610(R)
    [21] Klaers, J., Schmitt, J., Vewinger, F., & Weitz, M. (2010) Bose-Einstein Condensation of Photons in an Optical Microcavity. Nature, 468, 545-548.
    [22] Anderson, M. H., Ensher, J. R., Matthews, M.R., Wieman, C. E., & Cornell, E. A. (1995) Observation of Bose-Einstein Condensation in a Dilute Vapor. Science, 269, 198-201.
    [23] Davis, K. B., Mewes, M. O., Andrews, M. R., van Druten, D. J., Durfee, D. S., Kurn, D. M., & Ketterle, W. (1995) Bose-Einstein Condensation in a Gas of Sodium Atoms. Physical Review Letters, 75, 3969-3973.
    [24] Pethick, C.J. & Smith, H. (2002) Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, United Kingdom.
    [25] https://www.nobelprize.org/nobel_prizes/physics/laureates/2001/
    [26] Kapusta, J. I. (1981) Bose-Einstein Condensation, Spontaneous Symmetry Breaking, and Gauge Theories. Physical Review D, 24, 426-439.
    [27] Bloch, I., Dalibard, J., & Zwerger, W. (2008) Many-body Physics with Ultracold Gases. Reviews of Modern Physics, 80, 885-964.
    [28] Thomas, N. R., Kjærgaard, N., Julienne, P. S., & Wilson, A. C. (2004) Imaging off s and d Partial-Wave Interference in Quantum Scattering of Identical Bosonic Atoms. Physical Review Letters, 93, 173201.
    [29] Lipparni, E. (2003) Modern Many-Particle Physics: Atomic Gases, Quantum Dots and Quantum Fluids. World Scientific Publishing Co. Pte. Ltd., Singapore.
    [30] Abdullah, M (2009) Fisika Statistik untuk Mahasiswa MIPA. ITB Press, Bandung.
    [31] Anderson, P. W. (1958) Absence of Diffusion in Certain Random Lattices. Physical Review, 109, 1492-1505.
    [32] Lye, J. E., Fallani, L., Modugno, M., Wiersma, D., Fort, C., & Inguscio, M. (2004) A Bose-Einstein Condensate in a Random Potential. Physical Review Letters, 95, 070401.
    [33] Griffin, A., Snoke, D.W., & Stringari, S. (1995) Bose-Einstein Condensation. Cambridge University Press, Cambridge.
    [34] von Hase, M. (2010) Bose-Einstein Condensation in Weak and Strong Disorder Potentials. Bachelor Thesis, Freie Universitat Berlin.
    [35] Sanchez-Palencia, L., Clement,D., Lugan, P., Bouyer, P., Shlyapnikov, G. V., & Aspect, A. (2007) Anderson Localization of Expanding Bose-Einstein Condensates in Random Potentials. Physical Review Letters, 98, 210401.
    [36] Schulte, T., Drenkelforth, S., Kruse, J., Ertmer, W., Arlt, J., Sacha, K., Zakrzewski, & J., Lewenstein, M. (2005) Routes Towards Anderson-Like Localization of Bose-Einstein Condensates in Disordered Optical Lattices. Physical Review Letters, 95, 170411.
    [37] Billy, J., Josse, V., Zuo, Z., Bernard, A., Hambrecht, B., Lugan, P., Clement, D., Sanchez-Palencia, L., Bouyer, P., & Aspect, A. (2008) Direct Observation of Anderson Localization of Matter Waves in a Controlled Disorder. Nature, 453, 891-894.
    [38] Hulet, R. G., Dries, D., Pollack, S. E., & Hitchcock, J. M. (2010) Dissipative Transport of A Bose-Einstein Condensate. Physical Review A, 82, 033603.
    [39] Zaremba, E. & Wu, Z. (2011) Dissipative Dynamics of a Harmonically Confined Bose-Einstein Condensate. Physical Review Letters, 106, 165301.
    [40] 曾,靖夫. (2011) Dissipation of a Harmonically Trapped Bose-Einstein Condensate due to Impurity Scattering. M.Sc Thesis, National Taiwan Normal University.
    [41] Henkel, N., Cinti, F. Jain, p. Pupillo, G. & Pohl, T. (2012) Supersolid Vortex Crystals in Rydberg-Dressed Bose-Einstein Condensates. Physical Review Letters, 108, 265301.
    [42] Schutte, M. (2007) Bose-Eisntein Condensates with Long-Range Interactions. Diploma Thesis, Free University of Berlin.
    [43] Lewnstein, M., Sanpera, A., & Ahufinger, V. (2012) Ultracold Atoms in Optical Lattices: simulating quantum many-body systems. Oxford University Press, United Kingdom.
    [44] Plodzien, M., Lochead, G., de Hond, J., van Druten N. J., & Kokkelmans S. (2017) Rydberg Dressing of a One dimensional Bose-Einstein Condensates. Physical Review A, 95, 043606.
    [45] Hsueh, C. H., Lin, C. T., Horng, T. L. Wu, W. C. (2014) Quantum Crystals in a Trapped Rydberg-Dressed Bose-Einstein Condensate. Physical Review A, 86,013619.
    [46] Markovic, N., Christiansen, C., Mack, A. M., Huber W. H., Goldman, A. M. (1999) Superconductor-insulator Transition in Two Dimensions. Physical Review B, 60, 4320-4328.
    [47] Reppy, J. D. (1992) Superfluid Helium in Porous Media. Journal of Low Temperature Physics, 87, 205-245.
    [48] Aspect, A. & Inguscio, M. (2009 Anderson Localization of Ultracold atoms. Physics Today, 62, 30-35.
    [49] Chen, Y.P., Hitchcock, J., Dries, D., Junker, M., Welford, C., & Hulet, R. G. (2008) Phase Coherence and Superfluid-Insulator Transition in a Disordered Bose-Einstein Condensate. Physical Review A, 77, 033632.
    [50] Wu, Z. (2013) Dissipative Dynamics of Atomic Bose-Einstein Condensates at Zero Temperature. Dissertation, Queen’s University.
    [51] Tsuneto, T. (1998) Superconductivity and Superfluidity. Cambridge University Press, New York.
    [52] Zaremba, E. (1998) Sound Propagation in a Cylindrical Bose-Einstein Condensed Gas. Physical Review A, 57, 518-521.

    [53] Binh, L. N. (2015) Optical Fiber Communication Systems with MATLAB and Simulink Models. CRC Press, Florida.
    [54] Fitzmaurice, N., Gurarie, D., McCaughan, F., & Woyczynski, W. A. (1993) Nonlinear Waves and Weak turbulence with applications in oceanography and condensed matter physics. Springer Science+Business Media, New York.
    [55] Tuszynski, J. A. (2008) Molecular and Cellular Biophysics. Chapman & Hall/CRC, Florida.
    [56] Liu, J. P., Zhang, Z., & Zhao, G. (2017) Skyrmions: Topological Structures, Properties, and Applications. CRC Press, Florida.
    [57] Yunyi, G. (2004) Dimension reduction of the Gross-Pitaevskii Equation for Bose-Einstein Condensates. Thesis, National University of Singapore.
    [58] De Gennes, P.G. & Prost, J. (1993) The Physics of Liquid Crystal. Clarendon Press, Oxford.
    [59] Vakluchykm I., Fistul, M. V., Qin, P., & Flash, S. (2017) Anderson Localization in generalized discrete-time quantum walks. Physical Review B, 96. 144204.
    [60] Giergiel, K. & Sacha, K. (2017) Anderson Localization of a Rydberg electron along a classical orbit. Physical Review A, 95, 063402.
    [61] Vatnik, I. D., Tikan, A., Onishchukov, G., Churkin, D. V., & Sukhorukov, A. A. (2016) Anderson Localization in Synthetic Photonic Lattices. Scientific Reports, 7, 4301.
    [62] Sani, M. & Farzad, M. H. (2018) Anderson Localization of Surface Plasmons in Monolayer Graphene. Physical Review B, 97, 085406.
    [63] Ujfalusi, L., Giordano, M., Pittler, F., Kovacs, T. G., & Varga, I. (2015) Anderson Transition and Multifractals in the spectrum of the Dirac Operator of Quantum Chormodynamics at high Temperature. Physical Review D, 92, 094513.
    [64] Duan F. & Guojin, J. (2005) Introduction to Condensed Matter Physics. Volume 1. World Scientific Publishing Co. Pte. Ltd., Singapore.
    [65] Barenghi, C. F. & Parker N. G. (2016) A Primer on Quantum Fluids. Springer, Switzerland.
    [66] Henkel, N. (2013) Rydberd-dressed Bose-Einstein condensates. Dissertation, Dresden University of Technology.
    [67] Clement, D. (2007) Proprietes Statiques et Dynamiques D’un Condensat De Boseeinstein Dans Un Potentiel Aleatoire. Université
    Pierre et Marie Curie - Paris VI, Français.
    [68] Shlyapnikov, G. V., Kagan, Y., & Surkov, E. L. (1996) Evolution of a Bose-Condensed Gas under Variations of the Confining Potential. Physical Review A, 54, R1753-R1756.
    [69] Shlyapnikov, G. V. (2014). Ultracold quantum gases, part 1: Bose-condensed gases.
    [70] Lugan, P. (2010) Ultracold Bose Gases in Random Potentials: Collective Excitations and Localization Effects. Dissertation, Institut d’Optique Graduate School.
    [71] Hsueh, C. H., Tsai, Y. C., Wu, W. C. (2015) Intrinsic-to-extrinsic Supersolid Transition and Fractionally Modulated States in a Lattice Ultracold Bose Gas with Long-range Interaction. Physical Review A, 92, 013634.
    [72] Hsueh, C. H., Ong, R., Tseng, J. F., Tsubota, M., & Wu, W. C. (2018) Thermalization and Localization of an Oscillating Bose-Einstein Condensate in a Disordered Trap. Physical Review A, 98, 063613
    [73] Pezze, L. & Sanchez- Palencia, L. (2011) Localized and Extended States in a disordered trap. Physical Review Letters, 106, 040601.
    [74] Inguscio, M. (2010) Weakly Interacting in a disordered lattice. KITP Conference: Frontiers of Ultracold Atoms and Molecules, University of California, Santa Barbara.
    [75] Roati, G., D’Errico, F. Leonardo, Fattori, M., Fort, C., Zaccanti, M., Modugno, G., Modugno, M., & Inguscio, M. (2008) Anderson Localization of a Non-interacting Bose-Einstein Condensate. Nature, 453, 895-898.
    [76] Dries, D. F. (2010) Transport properties of a Bose-Einstein Condensate with Tunable Interactions in the Presence of a Disordered or Single Defect Potential. Dissertation, Rice University.
    [77] Clement, D. Bouyer, P., Aspect, A., & Sanchez-Palencia, L. (2008) Density Modulations in an Elongated Bose-Einstein Condensate Released from a Disordered Potential. Physical Review A, 77, 033631
    [78] Bhongale, S. G., Kakashvili, P., Bolech, C. J., & Pu, H. (2010) Dissipative transport of trapped Bose-Einstein condensates through disorder. Physical Review A, 82, 053632.
    [79] Proud, H. (2018) Soliton Structures in Bose-Einstein Condensates. Dissertation, Birmingham University.
    [80] Aikawa, K., Frisch, A., Mark, M., Baier, S., Rietzler, A., Grimm, R., & Ferlaino, G. (2012) Bose-Einstein Condensation of Erbium, Physical Review Letters, 108, 210401.
    [81] Lu, M., Burdick, N. Q., Youn, S. H., & Lev B. L. (2011) Strongly Dipolar Bose-Einstein of Dysprosium. Physical Review Letters, 107, 190401.
    [82] Heinonen, V., Burns, K. J., & Dunkel, J. (2018) Higher-order Quantum Hydrodynamics for Supersolids. arXiv, 1807.04149.

    無法下載圖示 本全文未授權公開
    QR CODE