研究生: |
吳松憲 Wu, Sung-Hsien |
---|---|
論文名稱: |
利用海氣耦合模式探討不同海洋條件對海燕(2013)颱風發展之影響 Effects of upper ocean conditions on development of super Typhoon Haiyan (2013) using COAWST model |
指導教授: |
鄭志文
Zheng, Zhe-Wen |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 海燕颱風 、COAWST 、海氣耦合 、北赤道反流 |
英文關鍵詞: | Typhoon Haiyan, COAWST, Air-Sea Interaction, NECC |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DES.003.2019.B07 |
論文種類: | 學術論文 |
相關次數: | 點閱:220 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
海燕颱風(2013年)是一個強度破紀錄的颱風,其在2013年襲擊菲律賓並造成了許多傷亡和巨大的經濟損失。本研究運用COAWST模式(Coupled Ocean Atmosphere Wave Sediment Transport Modeling),針對海燕颱風進行模擬,探討不同複雜程度耦合條件或不同年份的海洋背景條件對於海燕颱風路徑和強度的影響。結果顯示不同複雜程度耦合條件或不同年份的海洋背景條件,對颱風路徑的影響不大。然而,不同耦合條件下,對颱風強度的影響較為顯著,結果顯示,雙向耦合條件相對於其他條件所模擬出的颱風強度,與觀測資料更加吻合。此外,不同年份海洋背景環境對於颱風強度也有相當大的影響,儘管各個實驗有些微差異,但在2010年的海洋環境更加有利於颱風發展。此結果顯示在相同的大氣條件之下,海燕若生成於2010年將很有可能比實際發生在2013年的海燕更強,這表示即使海燕已經是極強烈之超級強颱,有很大進一步增強的可能性。最後,透過熱收支分析,我們發現,當北赤道反流(North Equatorial Counter Current, NECC)北移時,透過水平平流項熱傳輸,將南邊的熱向北傳輸,進而形成更有利於颱風發展的海洋環境,促使海燕颱風有進一步增強的可能性。
Typhoon Haiyan (2013) is a record-breaking typhoon that caused thousands of fatalities and large damages in the Philippines in November 2013. This study uses COAWST (Coupled Ocean Atmosphere Wave Sediment Transport Modeling) to simulate the typhoon Haiyan and explore the influences of different conditions on typhoon track and intensity. The results show that the coupling conditions of different complexity or the ocean background conditions of different years (2008-2013) have little effect on the typhoon track, but it will have a great impact on the intensity. The results show that the typhoon intensity simulated by the two-way coupling condition relative to other coupling conditions is more consistent with the observed data. In addition, the oceanic background environment in different years has a great impact on the typhoon intensity. Although the experiments are slightly different, the ocean environment in 2010 is more conducive to typhoon development. This result shows that under the same atmospheric conditions, Haiyan will probably be stronger in 2010 than the actual Haiyan in 2013, which means that even if Haiyan is already a very strong super strong station, it will be greatly enhanced. This study show that the NECC (North Equatorial Counter Current) transports heat into the development region of the Haiyan typhoon when the current northward shifts. The additional heat source provided by this horizontal advection that favors the development of the Haiyan typhoon.
毛正氣、黃明哲、黃文龍、陳昭銘(2011)。應用 WRF 模式於颱風路徑預報之研究。建國百年天氣分析預報與地震測報研討會論文彙編,中央氣象局,94-99。
吳俊傑, 黃清勇, 楊明仁, 簡芳菁, 洪景山, & 顏自雄. (2010). 颱風數值模擬之現況與挑戰-2009 年莫拉克颱風.大氣科學, 38(2), 99-134.
Chan, J. C., & Liu, K. S. (2004). Global warming and western North Pacific typhoon activity from an observational perspective. Journal of Climate, 17(23), 4590-4602.
Chen, S. S., Knaff, J. A., & Marks Jr, F. D. (2006). Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Monthly Weather Review, 134(11), 3190-3208.
Chien, F. C., & Kuo, H. C. (2011). On the extreme rainfall of Typhoon Morakot (2009). Journal of Geophysical Research: Atmospheres, 116(D5).
Cumming, I. G., & Wong, F. H. C. (2005). Digital processing of synthetic aperture radar data: algorithms and implementation. Artech House.
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., & Wimmer, W. (2012). The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sensing of Environment, 116, 140-158.
Emanuel, K. A. (1999). Thermodynamic control of hurricane intensity. Nature, 401(6754), 665.
Fritz, H. M., Blount, C. D., Thwin, S., Thu, M. K., & Chan, N. (2009). Cyclone Nargis storm surge in Myanmar. Nature Geoscience, 2(7), 448.
Gray, W. M. (1979). Hurricanes: their formation, structure and likely role in the tropical circulation. Meteorology over the tropical oceans. Royal Meteorological Society, 155-218.
Glenn, S. M., Miles, T. N., Seroka, G. N., Xu, Y., Forney, R. K., Yu, F., ... & Kohut, J. (2016). Stratified coastal ocean interactions with tropical cyclones. Nature Communications, 7, 10887.
Jacob, R., Larson, J., & Ong, E. (2005). M× N communication and parallel interpolation in Community Climate System Model Version 3 using the model coupling toolkit. The International Journal of High Performance Computing Applications, 19(3), 293-307.
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di Lorenzo, E., ... & Levin, J. (2008). Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics, 227(7), 3595-3624.
Knaff, J. A., & Zehr, R. M. (2007). Reexamination of tropical cyclone wind–pressure relationships. Weather and Forecasting, 22(1), 71-88.
Lander, M., Guard, C., & Camargo, S. J. (2014). Super Typhoon Haiyan [in ‘‘State of the Climate in 2013’’]. Bulletin of the American Meteorological Society, 95(7), S112-S114.
Leipper, D. F., & Volgenau, D. (1972). Hurricane heat potential of the Gulf of Mexico. Journal of Physical Oceanography, 2(3), 218-224.
Lin, I. I., & Chan, J. C. (2015). Recent decrease in typhoon destructive potential and global warming implications. Nature Communications, 6, 7182.
Lin, I. I., Pun, I. F., & Lien, C. C. (2014). “Category‐6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophysical Research Letters, 41(23), 8547-8553.
Lin, I. I., Pun, I. F., & Wu, C. C. (2009). Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Monthly Weather Review, 137(11), 3744-3757.
Mori, N., Kato, M., Kim, S., Mase, H., Shibutani, Y., Takemi, T., ... & Yasuda, T. (2014). Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf. Geophysical Research Letters, 41(14), 5106-5113.
Palmen, E. (1948). On the formation and structure of tropical hurricanes. Geophysica, 3(1), 26-38.
Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J., ... & Nordbeck, O. (2012). Global trends in tropical cyclone risk. Nature Climate Change, 2(4), 289.
Price, J. F. (1981). Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2), 153-175.
Pun, I. F., Lin, I. I., Wu, C. R., Ko, D. S., & Liu, W. T. (2007). Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1616-1630.
Pun, I. F., Lin, I. I., & Lo, M. H. (2013). Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophysical Research Letters, 40(17), 4680-4684.
Schiermeier, Q. (2013). Did climate change cause Typhoon Haiyan?. Nature News, November 11, 2013.
Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347-404.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. (2005). A description of the advanced research WRF version 2 (No. NCAR/TN-468+ STR). National Center For Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div.
Smith, W. H., & Sandwell, D. T. (1997). Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334), 1956-1962.
Stark, J. D., Donlon, C. J., Martin, M. J., & McCulloch, M. E. (2007, June). OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. In Oceans 2007-Europe (pp. 1-4). IEEE.
Switzer, A., Soria, L., Villanoy, C., Fritz, H., Bilgera, P., Cabrera, O., ... & Fernandez, I. (2015, April). Why was Typhoon Haiyan in the Philippines so bad and how does it compare to its 1897 predecessor?. In EGU General Assembly Conference Abstracts(Vol. 17).
Wada, A., Uehara, T., & Ishizaki, S. (2014). Typhoon-induced sea surface cooling during the 2011 and 2012 typhoon seasons: observational evidence and numerical investigations of the sea surface cooling effect using typhoon simulations. Progress in Earth and Planetary Science, 1(1), 11.
Warner, J. C., Armstrong, B., He, R., & Zambon, J. B. (2010). Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Modelling, 35(3), 230-244.
Warner, J. C., Perlin, N., & Skyllingstad, E. D. (2008). Using the Model Coupling Toolkit to couple earth system models. Environmental Modelling & Software, 23(10-11), 1240-1249.
Wyrtki, K. (1973). Teleconnections in the equatorial Pacific Ocean. Science, 180(4081), 66-68.
Zambon, J. B., He, R., & Warner, J. C. (2014). Investigation of hurricane Ivan using the coupled ocean–atmosphere–wave–sediment transport (COAWST) model. Ocean Dynamics, 64(11), 1535-1554.
Zheng, Z. W. (2014). Unusual warming in the coastal region of northern South China Sea and its impact on the sudden intensification of tropical cyclone Tembin (2012). Advances in Meteorology, 2014.