簡易檢索 / 詳目顯示

研究生: 李宗祐
Li, Zong-You
論文名稱: 利用腦側化反轉斑馬魚探討端腦的功能
Study of telencephalon function using cerebral lateralization inversed zebrafish
指導教授: 呂國棟
Lu, Kwok-Tung
口試委員: 呂國棟
Lu, Kwok-Tung
林豊益
Lin, li-Yih
楊奕玲
Yang, Yi-Ling
呂明偉
Lu, Ming-Wei
口試日期: 2021/03/30
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 59
中文關鍵詞: 斑馬魚腦側化類焦慮行為學習與記憶副松果體
英文關鍵詞: zebrafish, brain lateralization, anxiety-like behavior, learning and memory, parapineal
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202100408
論文種類: 學術論文
相關次數: 點閱:144下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦側化(cerebral lateralization)是指左右邊大腦半球(cerebral hemisphere)各會偏重執行(dominate)某些特定功能,為一種脊椎動物常見的現象。這種功能性的腦側化(functional lateralization)又可追溯至左右腦結構,或是特定分子於左右腦分佈的不對稱性(asymmetric)。許多文獻指出上丘腦(epithalamus)是探討斑馬魚腦部結構的不對稱(structural asymmetry)之重要標的。副松果體位於(parapineal)上丘腦中,正常情況下,該核團約有98%的機率會位於左腦中,僅少部分「腦反轉」個體(brain inversed)其副松果體會位於右腦。本計劃比較一般個體及腦反轉個體間,外顯行為及兩側端腦功能差異,結果將有助於了解斑馬魚腦結構不對稱性對,於腦功能側化的影響。
    目前已知功能性腦側化會體現於個體的認知(cognition)、情緒(emotion) 和學習與記憶(learning and memory)等面向。本研究利用腦側化反轉斑馬魚,探討整合結構不對稱性對情緒與認知的影響。本研究分別使用野生型(wild-type, WT)及foxd3:GFP品系的基因轉殖(transgenic, TG) 斑馬魚作為實驗對象,該TG品系斑馬魚的副松果體會表現外源性的綠色螢光蛋白(exogenic green fluorescence protein, GFP),故可藉此判別副松果體位置,以篩選出正常(無反轉)的左側副松果體個體(left-side parapineal, Lpp)及腦反轉的右側副松果體個體(right-side parapineal, Rpp)個體。研究包括了四階段的行為實驗(behavioral experiment),第一階段是基礎運動能力測試,用以確認各實驗動物的自發性游動(locomotor activity test)是否正常,基礎運動功能正常的個體,方能進入下一階段實驗。第二階段實驗為類焦慮行為(anxiety-like behavior)測試,本研究選用新穎性水箱測試(novel tank test),交叉比對不同組別實驗動物的類焦慮行為表現。第三階段則為抑制性逃避學習測試(inhibitory avoidance test),檢核腦反轉對恐懼記憶(fear memory)的建立是否有差異。第四階段則是利用腦反轉的TG斑馬魚,探討隨著腦構造反轉後,其功能性腦側化及偏重執行的外顯行為是否同樣出現反轉的現象。
    實驗結果顯示,腦反轉個體(Rpp)的運動功能與學習能力未受影響,但類焦慮行為明顯增加。在認知功能方面,對無反轉斑馬魚(Lpp)施以右側端腦破壞,會干擾空間及恐懼學習能力,故推測其與野生型斑馬魚相同,空間及恐懼的學習主要由右側端腦所主導,而腦反轉的斑馬魚(Rpp)則轉變為左側端腦主導。因而可推論斑馬魚的功能性腦側化將隨腦部發育反轉,而發生左右顛倒的情形。我們相信端腦功能性側化確實存在於斑馬魚的學習和記憶過程中,但該現象是來自於先天形生(innated)的神經迴路?或是後天經驗學習後(acquired)才逐步建立?仍有賴進一步探討。本研究也觀察到即使對端腦進行較小面績的破壞,但倘若破壞到較關鍵的部位,仍會對空間和恐懼學習造成顯著的損害。

    Cerebral lateralization is widely found in vertebrates. It is defined as a hemispheric preference in performing certain functions. Numerous studies reported that the parapineal gland, a nucleus of the epithalamus, is an essential target for exploring the structural and functional asymmetry of zebrafish's brain. Normally, approx. 98% of the zebrafishes, its parapineal glands appear in the left hemisphere. Previous studies also showed the cerebral lateralization is involved in sensory perception, emotion, learning, and memory. Our previous studies showed the spatial learning and memory was impaired after unilateral hemisphere lesion. These results evidence the functional dominance existed in the cerebral hemisphere of the zebrafishes.
    A transgenic foxd3: GFP line was applied in the current study. It expresses an exogenic green fluorescence protein in the parapineal. Therefore, the location of the parapineal could be visualized and confirmed via fluorescence microscopy. The transgenic zebrafishes were then cataloged by its parapineal location to the left side parapineal group (Lpp) and the right side parapineal group (Rpp). A modified aspiration ablation paradigm was applied. Animals were subjected to the unilateral ablation then subjected to behavioral experiments five days after the ablation. There are four stages in the present study. The first stage was aimed to evaluate the motor function and spontaneous activities using locomotor activity monitoring. Abnormal zebrafishes were then excluded from the subsequent experiments. In the second stage, novel tank dive test was used to examine anxiety-like behavior exhibited in the wild type and foxd3: GFP zebrafishes. The cerebral lateralization effect on fear learning was studied via an inhibitory avoidance test in the third stage. The fourth stage was aimed to explore whether the functional brain lateralization of zebrafish with inversion of the brain structure also reverses in explicit behavior.
    Results showed that neither motor function nor learning ability were impaired in the brain inverted zebrafishes (Rpp), but there was a significant increase in anxiety-like behavior compared with the control group. Which showed consistency to the previous studies. Besides, both non-inverted and wild-type zebrafishes showed a functional dominant on the right-side telencephalon. In contrast, the functional dominant changed to the left-side telencephalon in the brain inverted zebrafish (Rpp). Therefore, it could be inferred that the functional lateralization of the zebrafish would be reversed as the brain inversion.
    In conclusion, we suggest the functional lateralization of the telencephalon in the learning and memory does exist in the zebrafish. Further experiments will be required to determine whether the functional lateralization is natural borned (innated) or required the exposure of postnatal experiences (acquired). We also found that even a tiny ablation was performed may have a tremendous impairment effect on both the spatial and emotional learning.

    Table of contents i Abstracts in Chinese (中文摘要) iv Abstract in English vi List of abbreviations viii Introduction 1 1. Cerebral lateralization 1 2. Cerebral lateralization study using zebrafish 3 3. The correlation between structural asymmetry and behavior 6 4. Learning and memory in zebrafish 6 5. Application and research of Tg(foxd3:GFP) strain 7 6. Research aim and significance 9 Material and Methods 10 1. Subjects 10 2. Thermal induced developmental inversion of the brain of foxd3 10 3. Confirmation of zebrafish parapineal position 11 4. Locomotor activity test 12 5. Novel tank diving test 13 6. T-maze test 13 7. Inhibitory avoidance test (IA) 17 8. Telencephalon lesion surgery 19 9. Statistic 20 Results 21 Experiment-1: Explore the effect of unilateral telencephalon damage on zebrafish without brain reversal. 21 Experiment-2: Evaluation of the anxiety-like behavior between foxd3_L & foxd3_R in zebrafishes using novel tank test. 23 Experiment-3: Evaluate the possible effect of brain inversion on the inhibitory avoidance learning in zebrafishes. 24 Experiment-4: Explore if the same side telencephalon dominates left-side parapineal transgenic foxd3-GFP strain zebrafish's cognitive function. 25 Experiment-5: Explore the functional cerebral lateralization using right-side parapineal transgenic foxd3-GFP strain zebrafish. 27 Discussion 30 The structural inversion of the telencephalon does not affect the target side preference of the T-maze learning. 30 The correlation between ablation size of the telencephalon and the learning effectiveness. 32 Functional domination of telencephalon may exist in the learning and memory processing of zebrafish. 34 References 37 Figures 45

    Agetsuma M., Aizawa H., Aoki T., Nakayama R., Takahoko M., Goto M., Sassa T., Amo R., Shiraki T., Kawakami K., Hosoya T., Higashijima S., Okamoto H. (2010) The habenula is crucial for experience-dependent modification of fear responses in zebrafish. Nat Neurosci, 13, 1354-1356.
    Ambrogi Lorenzini C., Bucherelli C., Giachetti A., Mugnai L., Tassoni G. (1991) Effects of nucleus basolateralis amygdalae neurotoxic lesions on aversive conditioning in the rat. Physiol Behav, 49(4), 765-770.
    Andrew R. J., Osorio D., Budaev S. (2009) Light during embryonic development modulates patterns of lateralization strongly and similarly in both zebrafish and chick. Philos Trans R Soc Lond B Biol Sci, 364(1519), 983-989.
    Andrew R. J. (1999) The differential roles of right and left sides of the brain in memory formation. Behav Brain Res, 98(2), 289-295.
    Andrew R. J. (1991) The nature of behavioural lateralisation in the chick. In: Andrew R.J., editor. Neural and Behavioural Plasticity, Oxford: Oxford University Press, 536-554.
    Andrew R. J., Rogers L. J. (2002) The nature of lateralisation in tetrapods. In: Rogers L. J., Andrew R. J., editors. Comparative vertebrate lateralisation. Cambridge: Cambridge University Press, 94-125.
    Badzakova T. G., H¨aberling I. S., Roberts R. P., Corballis M. C. (2010) Cerebral asymmetries: complementary and independent processes. Plos One, 5(3), e9682.
    Barth K. A., Miklo´si A., Watkins J., Bianco I. H., Wilson S. W., Andrew R. J. (2005) fsi zebrafish show concordant reversal of laterality of viscera, neuroanatomy, and a subset of behavioral responses. Curr Biol, 15, 844-850.
    Ben-Moshe Z., Foulkes N. S., Gothilf Y. (2014) Functional development of the circadian clock in the zebrafish pineal gland. Biomed Res Int, 2014, 235781.
    Bianco I. H., Wilson S. W. (2009) The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Philos Trans R Soc Lond B, 364, 1005-1020.
    Blank M., Guerim L. D., Cordeiro R. F., Vianna M. R. (2009) A one-trial inhibitory avoidance task to zebrafish: rapid acquisition of an NMDA-dependent long-term memory. Neurobiol Learn Mem, 92(4), 529-534.
    Buatois A., Gerlai, R. (2020) Elemental and Configural Associative Learning in Spatial Tasks: Could Zebrafish be Used to Advance Our Knowledge? Front Behav Neurosci, 14, 570704.
    Butler A. B. (2000) Topography and topology of the teleost telencephalon: a paradox resolved. Neurosci Lett, 293, 95-98.
    Chiandetti C., Lemaire B. S., Versace E., Vallortigara G. (2017) Early- and late-light embryonic stimulation modulates similarly chicks' ability to filter out distractors. Symmetry, 9, 84.
    Concha M. L., Burdine R. D., Russell C., Schier A. F., Wilson S. W. (2000) A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron, 28, 399-409.
    Concha M. L., Signore I. A., Colombo, A. (2009) Mechanisms of directional asymmetry in the zebrafish epithalamus. Semin Cell Dev Biol, 20(4), 498-509.
    Concha M. L., Wilson S. W. (2001) Asymmetry in the epithalamus of vertebrates. J Anat, 199(1–2), 63-84.
    Dadda M., Bisazza A. (2006) Does brain asymmetry allow efficient performance of simultaneous tasks? Anim Behav, 72(3), 523-529.
    Demaree H. A., Everhart D. E., Youngstrom E. A., Harrison D. W. (2005) Brain lateralization of emotional processing: historical roots and a future incorporating “dominance.” Behav Cogn Neurosci Rev, 4(1), 3-20.
    Demski L. S. (2013) The pallium and mind/behavior relationships in teleost fishes. Brain Behav Evol, 82(1), 31-44.
    Dreosti E., Vendrell Llopis N., Carl M., Yaksi E., Wilson S. W. (2014) Left-right asymmetry is required for the habenulae to respond to both visual and olfactory stimuli. Current biology : CB, 24(4), 440-445.
    Duboc V., Dufourcq P., Blader P., Roussigné M. (2015) Asymmetry of the Brain: Development and Implications. Annu Rev Genet, 49, 647-672.
    Eichenbaum H., Otto T., Cohen N. J. (1992) The hippocampus: what does it do? Behav Neural Biol, 57, 2-36.
    Facchin L., Burgess H. A., Siddiqi M., Granato M., Halpern M. E. (2009) Determining the function of zebrafish epithalamic asymmetry. Phil Trans R Soc B, 364, 1021-1032.
    Facchin L., Duboué E. R., Halpern, M. E. (2015) Disruption of epithalamic left-right asymmetry increases anxiety in Zebrafish. J Neurosci, 35(48), 15847-15859.
    Fontana B. D., Cleal M., Clay, J. M., Parker M. O. (2019) Zebrafish (Danio rerio) behavioral laterality predicts increased short-term avoidance memory but not stress-reactivity responses. Anim Cogn, 22(6), 1051-1061.
    Gamse J. T., Thisse C., Thisse B., Halpern M. E. (2003) The parapineal mediates left-right asymmetry in the zebrafish diencephalon. Development, 130, 1059-1068.
    Gazzaniga M. S. (2005) Forty-five years of split-brain research and still going strong. Nat Rev Neurosci, 6(8), 653-659.
    Ghirlanda S., Vallortigara G. (2004) The evolution of brain lateralization: a game theoretical analysis of population structure. Proc R Soc London B, 271, 853-857.
    Gilmour D. T., Maischein H. M., Nu¨sslein V. C. (2002) Migration and function of a glial subtype in the vertebrate peripheral nervous system. Neuron, 34, 577-588.
    Gorissen M., Manuel R., Pelgrim T. N., Mes W., de Wolf M. J., Zethof J., Flik G., van den Bos R. (2015) Differences in inhibitory avoidance, cortisol and brain gene expression in TL and AB zebrafish. Genes Brain Behav, 14(5), 428-438.
    Goto K., Kurashima R., Gokan H., Inoue N., Ito I., Watanabe S. (2010) Left-right asymmetry defect in the hippocampal circuitry impairs spatial learning and working memory in IV mice. Plos One, 5(11), e15468.
    Heuts B. A. (1999) Lateralization of trunk muscle volume, and lateralization of swimming turns of fish responding to external stimuli. Behav Processes, 47(2), 113-124.
    LeDoux J. E. (1995) Emotions: clues from the brain. Annu Rev Psychol , 46, 209-235.
    Liang J. O., Etheridge A., Hantsoo L., Rubinstein A. L., Nowak S. J., Izpisu´a Belmonte J. C., Halpern M. E. (2000) Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. Development, 127, 5101-5112.
    Lucon-Xiccato T., Montalbano G., Dadda M., Bertolucci C. (2020) Lateralization correlates with individual differences in inhibitory control in zebrafish. Biol Lett, 16(8), 20200296.
    Lu P. N., Lund C., Khuansuwan S., Schumann A., Harney-Tolo M., Gamse J. T., Liang J. O. (2013) Failure in closure of the anterior neural tube causes left isomerization of the zebrafish epithalamus. Dev Biol, 374(2), 333-344.
    Manning L., Thomas-Ant´erion C. (2011) Marc Dax and the discovery of the lateralisation of language in the left cerebral hemisphere. Rev Neurol, 167(12), 868-872.
    Manuel R., Gorissen M., Roca C. P., Zethof J., van de Vis H., Flik G., van den Bos R. (2014) Inhibitory avoidance learning in zebrafish (Danio rerio): effects of shock intensity and unraveling differences in task performance. Zebrafish, 11(4), 341-352.
    McKenzie R., Andrew R. J., Jones R. B. (1998) Lateralisation in chicks and hens: new evidence for control of response by the right eye system. Neuropsychologia, 36, 51-58.
    Mench J. A., Andrew R. J. (1986) Lateralisation of a food search task in the domestic chick. Behav Neural Biol, 46, 107-114.
    Miklósi A., Andrew R. J. (1999) Right eye use associated with decision to bite in zebrafish. Behav Brain Res, 105(2), 199-205.
    Miklósi A., Andrew, R. J., Savage, H. (1997) Behavioural lateralisation of the tetrapod type in the zebrafish (Brachydanio rerio). Physiol Behav, 63, 127-135.
    Miklósi, A., Andrew, R. J. Gasparini, S. (2001) Role of right hemifield in visual control of approach to target in zebrafish. Behav Brain Res, 122, 57-65.
    Miletto Petrazzini M. E., Gambaretto L., Dadda M., Brennan C., Agrillo C. (2020a) Are cerebral and behavioural lateralization related to anxiety-like traits in the animal model zebrafish (Danio rerio)? Laterality, 1-19.
    Miletto Petrazzini M. E., Sovrano V. A., Vallortigara G., Messina A. (2020b) Brain and Behavioral Asymmetry: A Lesson From Fish. Front Neuroanat, 14, 11.
    Ming-Chong Ng. (2011) The zebrafish as a model for studying of telencephalic synaptic plasticity and mental retardation.
    Morandi-Raikova A., Mayer U. (2020) The effect of monocular occlusion on hippocampal c-Fos expression in domestic chicks (Gallus gallus). Sci Rep, 10(1), 7205.
    Ocklenburg S., Hirnstein M., Beste C., Güntürkün O. (2014) Lateralization and cognitive systems. Front Psychol, 5, 1143.
    O’Keefe J., Nadel L. (1978) The hippocampus as a cognitive map. Oxford:Clarendon.
    Pascual A., Huang K. L., Neveu J., Pr´eat T. (2004). Neuroanatomy: brain asymmetry and long-term memory. Nature, 427(6975), 605-606.
    Portavella M., Torres B., Salas C. (2004) Avoidance response in goldfish: Emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci, 24, 2335-2342.
    Portavella M., Vargas J. P., Torres B., Salas C. (2002) The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res Bull, 57, 397-399.
    Portavella M., Vargas J. P. (2005) Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. Eur J Neurosci, 21(10), 2800-2806.
    Rashid N. Y., Andrew R. J. (1989) Right hemisphere advantage for topographical orientation in the domestic chick. Neuropsychologia, 7, 937-948.
    Reynolds J. E., Long X., Grohs M. N., Dewey D., Lebel C. (2019) Structural and functional asymmetry of the language network emerge in early childhood. Dev Cogn Neurosci, 39, 100682.
    Rogers L. J., Zucca P., Vallortigara G. (2004) Advantages of having a lateralized brain. Proc R Soc Lond B, 271(Suppl. 6), S420-422.
    Rogers L. J. (2014) Asymmetry of brain and behavior in animals: Its development, function, and human relevance. Genesis, 52(6), 555-571.
    Roussigne´ M., Bianco I. H., Wilson S. W., Blader P. (2009) Nodal signalling imposes left-right asymmetry upon neurogenesis in the habenular nuclei. Development, 136, 1549-1557.
    Salas C., Broglio C., Duran E., Gomez A., Ocana F. M., Jimenez-Moya F., Rodriguez F. (2006) Neuropsychology of learning and memory in teleost fish. Zebrafish, 3, 157-171.
    Salva O., Regolin L., Mascalzoni E., Vallortigara G. (2012) Cerebral and behavioural asymmetries in animal social recognition. Comp Cogn Behav Rev,7, 110-138.
    Schmidt R., Beil T., Strähle U., Rastegar S. (2014) Stab wound injury of the zebrafish adult telencephalon: a method to investigate vertebrate brain neurogenesis and regeneration. J Vis Exp, 90, e51753.
    Schredelseker T., Driever W. (2018) Bsx controls pineal complex development. Development (Cambridge, England), 145(13), dev163477.
    Sovrano V. A. (2004) Visual lateralization in response to familiar and unfamiliar stimuli in fish. Behav Brain Res, 152(2), 385-391.
    Sovrano V. A., Andrew R. J. (2006) Eye use during viewing are flection: behavioural lateralisation in zebrafish larvae. Behav Brain Res, 167(2), 226-231.
    Stewart A. M., Gaikwad S., Kyzar E., Kalueff A. V. (2012) Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test. Brain Res, 1451, 44-52.
    Sydnor V. J., Bouix S., Pasternak O., Hartl E., Levin-Gleba L., Reid B., Tripodis Y., Guenette J. P., Kaufmann D., Makris N., Fortier C., Salat D. H., Rathi Y., Milberg W. P., McGlinchey R. E., Shenton M. E., Koerte I. K. (2020) Mild traumatic brain injury impacts associations between limbic system microstructure and post-traumatic stress disorder symptomatology. Neuroimage Clin, 26, 102190.
    Vallortigara G., Andrew R. J. (1991) Lateralization of response to change in a model partner by chicks. Anim Behav, 41, 187-194.
    Vallortigara G. (2000) Comparative neuropsychology of the dual brain: a stroll through left and right animals’ perceptual worlds. Brain Lang, 73, 189-219.
    Vallortigara G., Rogers L. J. (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci, 28, 575-633.
    Watkins J., Miklósi A., Andrew R. J. (2004) Early asymmetries in the behaviour of zebrafish larvae. Behav Brain Res, 151(1-2), 177-183.
    Westerfield M. (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed., Univ. of Oregon Press, Eugene.
    Wullimann D. M., Rupp D. B., Reichert P. D. (1996) Neuroanatomy of the Zebrafish Brain. Birkhäuser Basel.
    Wu Y. J., Chen Y. L., Tang T. H., Ng M. C., Amstislavskaya T. G., Tikhonova M. A., Yang Y. L., Lu K. T. (2017) Unilateral stimulation of the lateral division of the dorsal telencephalon induces synaptic plasticity in the bilateral medial division of zebrafish. Sci Rep, 7(1), 9096.
    Wu Y. J. (2008) Asymmetric behavior of zebrafish in spatial memory learning program - discussing the effects of brain lateralization.

    下載圖示
    QR CODE