研究生: |
陳昱翰 Chen, Yu-Han |
---|---|
論文名稱: |
以多目標蟻群最佳化演算法求解具時窗限制之越野定向問題 An Ant Colony Optimization Algorithm for the Multiobjective Orienteering Problem with Time Windows |
指導教授: |
蔣宗哲
Chiang, Tsung-Che |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 多目標蟻群最佳化演算法 、路徑重新鏈接 、具時窗限制之越野定向問題 |
論文種類: | 學術論文 |
相關次數: | 點閱:86 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
時窗限制之越野定向問題 (Orienteering Problem with Time Windows, OPTW) 是由越野定向問題 (Orienteering Problem, OP) 增加時窗限制,同時也增加問題的難度,更加符合現實生活的情形。考慮到出遊往往有多人同行,針對每個景點所給予個人的感受有所不同,於是本論文將單目標的最佳化問題,發展成多目標時窗限制之越野定向問題 (Multiobjective Orienteering Problem with Time Windows, MOOPTW),同時考量每個人對不同景點的評分,找出一群相對好的路線,由使用者來選擇。
本論文將費洛蒙配置在每個權重方向上,費洛蒙的更新分為區域以及全域。區域更新:選擇到的路徑做更新,其餘路徑進行揮發,全域更新:權重方向上最好的路線做更新。區域搜尋採用路徑重新鏈接 (Path relinking) 以不同的鄰域函式,來提高搜尋的效能,並且比較不同的鄰域函式。本論文的方法與P-ACO [10] 套用本論文所使用的區域搜尋來比較。最後本論文列出目前所找到的多目標最佳解,使得日後能夠做比較。
[1] P. Vansteenwegen, W. Souffriau & D. V. Oudheusden, “The orienteering problem: A survey,” European Journal of Operational Research, vol. 209, issue 1, pp. 1-10, 2011.
[2] M. Dorigo, Optimization, learning and natural algorithms, Ph.D. Thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992.
[3] K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss & C. Stummer, “Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection,” Annals of Operations Research, vol. 131, issue 1-4, pp. 79-99, 2004.
[4] T. Tsiligirides, “Heuristic methods applied to orienteering,” The Journal of the Operational Research Society, vol. 35, no. 9, pp. 797-809, 1984.
[5] B. L. Golden, L. Levy & R. Vohra, “The orienteering problem,” Naval Research Logistics, vol. 34, issue 3, pp. 307-318, 1987.
[6] M. F. Tasgetiren & A. E. Smith, “A genetic algorithm for the orienteering problem,” Proceedings of IEEE Congress on Evolutionary Computation, vol. 2, pp. 910-915, 2000.
[7] M. Verma, M. Gupta, B. Pal & K. K. Shukla, “A stochastic greedy heuristic algorithm for the orienteering problem,” 2014 International Conference on Computer and Communication Technology, pp. 59-65, 2014.
[8] M. G. Kantor & M. B. Rosenwein, “The orienteering problem with time windows,” The Journal of the Operational Research Society, vol. 43, no. 6, pp. 629-635, 1992.
[9] J. Karbowska-Chilinska & P. Zebielski, “Genetic algorithm with path relinking for the orienteering problem with time windows,” Fundamenta Informaticae - Concurrency Specification and Programming, vol. 135, issue 4, pp. 419-431, 2014.
[10] J. Karbowska-Chilinska & P. Zebielski, “Genetic algorithm solving the orienteering problem with time windows,” Proceedings of the International Conference on Systems Science 2013, pp. 609-619, 2014.
[11] M. Schilde, K. F. Doerner, R.F. Hartl & G.Kiechle, “Metaheuristics for the bi-objective orienteering problem,” Swarm Intelligence, vol. 3 issue 3, pp.179-201, 2009.
[12] S. W. Lin & V. F. Yu, “A simulated annealing heuristic for the team orienteering problem with time windows,” European Journal of Operational Research, vol. 217, issue 1, pp. 94-107, 2012.
[13] P. Vansteenwegen, W. Souffriau, G. V. Berghe & D. V. Oudheusden, “Iterated local search for the team orienteering problem with time windows,” Computers & Operations Research, vol. 36, issue 12, pp. 3281-3290, 2009.
[14] R. Montemanni & L. M. Grambardella, “An ant colony system for team orienteering problems with time windows,” Foundations of Computing and Decision Sciences, vol. 34, issue 4, pp. 287-306, 2009.
[15] Q. Zhang & H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Transactions on Evolutionary Computation, vol. 11, issue 6, pp. 712-731, 2007.
[16] H. Li, D. Landa-silva & X. Gandibleux, “Evolutionary multi-objective optimization algorithms with probabilistic representation based on pheromone trails,” Proceedings of IEEE Congress on Evolutionary Computation, pp. 1-8, 2010.
[17] L. Ke, Q. Zhang & R. Battiti, “MOEA/D-ACO:A multiobjective evolutionary algorithm using decomposition and ant colony,” IEEE Transactions on Cybernetics, vol. 43, issue 6, pp. 1845-1859, 2013.
[18] Team orienteering problem with time windows instances. http://www.mech.kuleuven.be/en/cib/op/
[19] G. Righini & M. Salani, “Dynamic programming for the orienteering problem with time windows,” Dipartimento di Technologie dell’Informazione, Universita degli Studi Milano, Crema, Italy, Tech. Rep. TR-91, 2006.
[20] D. A. Van Veldhuizen & G. B. Lamont, “Multiobjective evolutionary algorithm research: A history and analysis,” Dept. Elec. Comput. Eng., Graduate School of Eng., Air Force Inst. Technol., Wright-Patterson, AFB, OH, Tech. Rep. TR-98-03, 1998.
[21] Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun & J. Wu, “MOEA/D with Adaptive Weight Adjustment,” Evolutionary computation, vol. 22, no. 2, pp. 231-264, 2014.
[22] S. N. Parragh & F. Tricoire, “Branch-and-bound for bi-objective integer programming,” Optimization online, 2015