研究生: |
楊勝凱 Yang, Sheng-Kai |
---|---|
論文名稱: |
電噴灑游離質譜法對難溶性有機金屬「茜素-媒染劑」的分析與研究 Study of the chemical structures of insoluble organometallic compound “alizarin-mordant” based on electrospray/mass spectrometry |
指導教授: |
林震煌
Lin, Cheng-Huang |
口試委員: | 丁望賢 呂家榮 |
口試日期: | 2021/06/11 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 二階段-竹筆尖電噴灑游離 、茜素 、媒染 |
英文關鍵詞: | two-step bamboo nib-electrospray, alizarin, mordant |
DOI URL: | http://doi.org/10.6345/NTNU202100522 |
論文種類: | 學術論文 |
相關次數: | 點閱:75 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
茜素在媒染過程中,經常使用醋酸鋁或明礬作為媒染劑。媒染劑中的金屬離子可以和茜素在布料纖維上形成不可溶的有機金屬錯合物,達到固色的目的。不過這些有機金屬錯合物的結構式,至今仍無法以質譜儀來進行測量。
本實驗利用二階段-竹筆尖/電噴灑游離質譜法(two-step bamboo nib-electrospray/mass spectrometry) 成功測量到茜素與醋酸鋁反應時,形成「茜素-鋁離子」有機金屬錯合物之前的中間產物,包括[C14H7O4Al(OH)(CH3OH)]2+, (m/z=314)及[C14H7O4Al(CH3OH)2]2+, (m/z=329)。此反應一旦形成有機金屬錯合物,其沉澱物為紅色。該紅色沉澱物可使用基質輔助雷射脫附/飛行時間型質譜儀加以測量,並以CHCA (alpha-cyano-4-hydroxycinnamic acid)作為基質。實驗結果發現在負電模式時,質譜圖上有一明顯的訊號在m/z=502,符合兩個茜素分子與醋酸鋁中的鋁離子錯合的荷質比。此外在測量茜素與明礬(鉀鋁礬)溶液的訊號時,還發現了兩個含有鉀離子的訊號,分別是[C14H7O4K(CH3OH)3], (m/z=373)及[C14H7O4K(OH)(CH3OH)3], (m/z=390)。
本論文闡述二階段-竹筆尖/電噴灑游離質譜法的原理及應用。對於測量「茜素-媒染劑」的中間產物的實驗條件,包括電噴灑時的正或負電模式、進樣流速、溫度等條件均有詳細探討。對於今後測量反應快速的錯合反應,提供了一種新的質譜分析方法。
It is common that use aluminium acetate or alum as a mordant dye during the dyeing process. The metal ions in the mordant reacts with the alizarin, forming insoluble organometallic precipitate and attaching it firmly to the fabric. However, the structural formulas of these insoluble organometallic precipitate cannot be measured by mass spectrometers.
The research is successfully detected the intermediate products of alizarin-aluminum ion that alizarin reacts with aluminum acetate by using two-step bamboo nib-electrospray/mass spectrometry. The intermediate products include [C14H7O4Al(OH)(CH3OH)]2+, (m/z=314) and [C14H7O4Al(CH3OH)2]2+, (m/z=329). The precipitate that alizarin reacts with aluminum acetate is red, when the reaction forms an insoluble organometallic complex. The red precipitate can be measured by using matrix-assisted laser desorption/time-of-flight mass spectrometer with CHCA (alpha-cyano-4-hydroxycinnamic acid) as the matrix. The results found that in the negative mode, there is an obvious signal on the mass spectrum at m/z=502, which is consistent with the mass-to-charge ratio of the complex of two alizarin molecules with aluminum ions. In addition, when detecting the signal of alizarin and alum solution, two signals containing potassium ions were also found. One is [C14H7O4K(CH3OH)3], (m/z=373), and the other is [C14H7O4K(OH)(CH3OH)3], (m/z=390).
This research describes the principle and application of the two-step bamboo nib-electrospray/mass spectrometry. The experimental conditions for measuring the intermediate product of “alizarin-mordant”, including the positive or negative mode of electrospray, the injection flow rate, temperature and other conditions are discussed in detail. It provides a new method of mass spectrometry for measuring the rapid reaction of complex reactions in the future.
1. Harley, R. D., Field’s Manuscripts: Early Nineteenth Century Colour Samples and Fading Tests. Stud. Conserv., 1979, 24(2), 75-84.
2. Chemchame, Y., Moudden, M. E., Mansar, A., Dyeing Wool Fiber with Natural Alizarin in a Vat System. J. Am. Chem. Soc., 2016, 4(5), 170-173.
3. Kiel, E. G., Heertjes, P. M., Metal Complexes of Alizarin V–Investigations of Alizarin–dyed Cotton Fabrics. J. Soc. Dye. Colour, 1965, 81(3), 98-102.
4. Baykuş, O., Celik, I. T., Dogan Ş. D., Davulcu, A., Dogan, M., Enhancing the Dyeability of Poly(Lactic Acid) Fiber with Natural Dyes of Alizarin, Lawsone, and Indigo. Fiber. Polym., 2017, 18(10), 1906-1914.
5. El-Shishtawy, R. M., Shokry, G. M., Ahmed, N. S. E., Kamel, M. M. Dyeing of Modified Acrylic Fibers with Curcumin and Madder Natural Dyes. Fiber. Polym., 2009, 10(5), 617-624.
6. Shams-Nateri, A.. Reusing wastewater of madder natural dye for wool dyeing. J. Clean Prod., 2011, 19(6), 775-781.
7. Jiang, H. Y., Hu, X. D., Zhu, J.J., Wan, J., Yao, J. B., Studies on the photofading of alizarin, the main component of madder. Dyes Pigment., 2021, 185, 108940.
8. Puchtler, H., Meloan, S. N., Terry, M. S., On The History and Mechanism of Alizarin and Alizarin Red S Stains for Calcium. J. Histochem. Cytochem., 1969, 17(2), 110-124.
9. Moriguchi, T., Yano, K ., Nakagawa, S., Kaji, F., Elucidation of adsorption mechanism of bone-staining agent alizarin red S on hydroxyapatite by FT-IR microspectroscopy. J. Colloid Interface Sci., 2003, 260(1), 19-25.
10. Albadarin, A. B., Mangwandi, C., Mechanisms of Alizarin Red S and Methylene blue biosorption onto olive stone by-product: Isotherm study in single and binary systems. J. Environ. Manage., 2015, 164, 86-93.
11. Pagliai, M., Osticioli, I., Nevin, A., Siano, S., Cardini, G.,
Schettino, V., DFT calculations of the IR and Raman spectra of anthraquinone dyes and lakes. J. Raman Spectrosc., 2018, 49(4), 668-683.
12. Churchill, M. R., Keil, K. M., Bright, F. V., Pandey, S., Baker, G. A., Keister, J. B., Linkage and Redox Isomerism in Ruthenium Complexes of Catecholate, Semiquinone, and o-Acylphenolate Ligands Derived from 1,2-Dihydroxy-9,10-anthracenedione (Alizarin) and Related Species: Syntheses, Characterizations, and Photophysics. Inorg Chem., 2000, 39, 5807-5816.
13. Tang, Z., Wei, H., Zhou, P., Effects of solvents on the excited state intramolecular proton transfer and hydrogen bond mechanisms of alizarin and its isomers. J. Mol. Liq., 2020, 301, 112415.
14. Komiha, N., Kabbaj, O.K., Chraibi, M., A density functional study of alizarin two of its isomers and itstransition metals and rare-earth complexes. Theochem-J. Mol. Struct., 2002, 594, 135-145.
15. Doskocz, M., Kubas, K., Frąckowiak, A., Gancarz, R., NMR and ab initio studies of Mg2+, Ca2+, Zn2+, Cu2+ alizarin complexes. Polyhedron, 2009, 28, 2201-2205.
16. Soubayrol, P., Dana, G., Aluminium-27 Solid-State NMR Study of Aluminium Coordination Complexes of Alizarin. Magn. Reson. Chem., 1996, 34, 638-645.
17. De Santis, D., Moresi, M., Production of alizarin extracts from Rubia tinctorum and assessment of their dyeing properties. Ind. Crops. Prod., 2007, 26(2), 151-162.
18. Elslande, E. V., Guérineau, V., Thirioux, V., Richard, G., Richardin, P., Laprévote, O., Hussler, G., Walter, P., Analysis of ancient Greco–Roman cosmetic materials using laser desorption ionization and electrospray ionization. Anal. Bioanal. Chem., 2008, 390, 1873-1879.
19. Boseva, K., Bosseva, Y., Edible and medicinal plants in the cloister gardens of West Europe (800s –900s AD). Phytol. Balcan., 2016, 22(2), 161–166.
20. Derksen, G. C. H., Beek, T. A., Groot, Æ., Capelle, A., High-performance liquid chromatographic method for the analysis of anthraquinone glycosides and aglycones in madder root (Rubia tinctorum L). J. Chromatogr. A, 1998, 816(2), 277-281.
21. Boldizsár, I., Szűcs, Z., Füzfai, Zs., Molnár-Perl, I., Identification and quantification of the constituents of madder root by gas chromatography and high-performance liquid chromatography. J. Chromatogr. A, 2006, 1133(1), 259-274.
22. Krizsán, K., Szókán, Gy., Toth, Z. A., Hollósy, F., László, M., Khlafulla A., HPLC Analysis of Anthraquinone Derivatives in Madder Root (Rubia Tinctorum) and Its Cell Cultures. J. Liq. Chromatogr. Relat. Technol., 1996, 19(14), 2295-2314.
23. Angelini, L. G., Pistelli, L., Belloni, P., Bertoli, A., Panconesi, S., Rubia tinctorum a source of natural dyes: agronomic evaluation, quantitative analysis of alizarin and industrial assays. Ind. Crops. Prod., 1997, 6(3), 303-311.
24. Derksen, G. C., Niederländer, H. A., Beek, T. A., Analysis of anthraquinones in Rubia tinctorum L. by liquid chromatography coupled with diode-array UV and mass spectrometric detection. J. Chromatogr. A, 2002, 978(1), 119-127.
25. Derksen, G. C., Beek, T. A., Rubia tinctorum L. Stud. Nat. Prod. Chem., 2002, 26, 629-684.
26. Cameron, D. W., Feutrill, G. I., Keep, P. L., Dichloro quinones as dienophiles: synthesis of alizarin derivatives. Tetrahedron Lett., 1989, 30(38), 5173-5176.
27. Fenn, J. B., Mann, M., Meng, C. K., Wang, S. F., Whitehouse, G. M., Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989, 246, 64-71.
28. Dole, M., Mack, L. L., Hines, R. L., Molecular Beams of Macroions. J Chem. Phys., 1968, 49, 2240-2249.
29. Mack, L. L., Kralic, P., Rhedue, A., Dole, M., Molecular Beams of Macroions II. J Chem. Phys., 1970, 52, 4977-.4986.
30. Lee, C. Y., Shiea, J., Gas Chromatography Connected to Multiple Channel Electrospray Ionization Mass Spectrometry for the Detection of Volatile Organic Compounds. Anal. Chem., 1998, 70, 2757-2761.
31. Smith, R. D., Loo, J. A., Loo, R. R. O., Busman, M., Udseth, H. R., Principles and practice of electrospray ionization—mass spectrometry for large polypeptides and proteins. Mass Spectrom. Rev., 1991, 10 (5), 359-452.
32. Chang, D. Y., Lee, C. C.; Shiea, J., Detecting Large Biomolecules from High-Salt Solutions by Fused-Droplet Electrospray Ionization Mass Spectrometry. Anal. Chem., 2002, 74 (11), 2465-2469.
33. Chen, H., Venter, A., Cooks, R. G., Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem. Commun., 2006, 19, 2042-2044.
34. Jiang, J., Zhang, H., Li, M., Dulay, M. T., Ingram, A. J., Li, N., You, H., Zare, R. N., Droplet Spray Ionization from a Glass Microscope Slide: Real-Time Monitoring of Ethylene Polymerization. Anal. Chem., 2015, 87 (16), 8057-8062.
35. Yu, K., Zhang, H., He, Jing, Zare, R. N., Wang, Y., Li, L., Li, N., Zhang, D., Jiang, J., In Situ Mass Spectrometric Screening and Studying of the Fleeting Chain Propagation of Aniline. Anal. Chem., 2018, 90 (12), 7154-7157.
36. Blades, T., Ikonomou, M. G., Kebarle, P., Mechanism of Electrospray Mass Spectrometry. Electrospray as an Electrolysis Cell. Anal. Chem. 1991, 63, 2109-2114.
37. Kebarle, P., Tang, L., From ions in solution to ions in the gas phase-the mechanism of electrospray mass spectrometry. Anal. Chem. 1993, 65, 972-986..
38. Smith, D. P., The Electrohydrodynamic Atomization of Liquids. IEEE Trans. Ind. Appl.,1986, IA-22, 527-535.
39. Kebarle, P., Verkerk, U. H., Electrospray: From ions in solution to ions in the gas phase, what we know now. Mass Spectrom. Rev., 2009, 28 (6), 898-917.
40. Fenn J. B., Mann, M., Meng, C. K., Wong, S. F., Electrospray ionization-principles and practice. Mass Spectrom. Rev., 1990, 9, 37-70.
41. Gamero-Castaño, M., Mora, J. F., Mechanisms of electrospray ionization of singly and multiply charged salt clusters. Anal. Chim. Acta, 2000, 406(1), 67-91.
42. Kebarle, P., A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J. Mass Spectrom., 2000, 35(7), 804-817.
43. Wilm, M. S., Mann, M., Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last. Int. J. Mass Spectrom., 1994, 136(2), 167-180.
44. Costa, A. B., Cooks, R. G., Simulated splashes: Elucidating the mechanism of desorption electrospray ionization mass spectrometry. Chem. Phys. Lett., 2008, 464(1), 1-8.
45. Iribarne, J., Thomson, B., On the evaporation of small ions from charged droplets. J. Chem. Phys., 1976, 64 (6), 2287-2294.
46. Chen, H. K., Lin, C. H., Liu, J. T., Lin, C. H., Electrospray ionization using a bamboo pen nib. Int. J. Mass Spectrom., 2013, 356, 37-40.
47. Hsu Y. T., Lee, W. Z., Lin C. H., Insights into the chemistry and structure of iron gall ink based on “two-step” bamboo nib-spray/mass spectrometry. Int. J. Mass Spectrom., 2020, 451, 116325.
48. Lee, H., Jhang, C. S., Liu, J. T., Lin, C. H., Rapid screening and determination of designer drugs in saliva by a nib-assisted paper spray-mass spectrometry and separation technique. J. Sep. Sci., 2012, 35(20), 2822-2825.
49. Lin, C. H., Liao, W. C., Chen, H. K., Kuo, T. Y., Paper spray-MS for bioanalysis. Bioanalysis, 2014, 6(2), 199-208.
50. Liu, J., Wang, H., Manicke, N. E., Lin, J. M., Cooks, R. G., Ouyang, Z., Development, Characterization, and Application of Paper Spray Ionization. Anal. Chem., 2010, 82 (6), 2463-2471.
51. Hu, B., So, P. K., Chen, H., Yao, Z. P., Electrospray Ionization Using Wooden Tips. Anal. Chem., 2011, 83 (21), 8201-8207.
52. Mehrparvar, L., Safapour, S., Sadeghi-Kiakhani, M., Gharanjig, K., A cleaner and eco-benign process for wool dyeing with madder, Rubia tinctorum L., root natural dye. Environ. Sci. Technol., 2016, 13, 2569-2578.
53. Jahangiri, A., Ghoreishian, S. M., Akbari, A., Norouzi, M., Ghasemi, M., Ghoreishian, M., Shafiabadi, E., Natural Dyeing of Wool by Madder (Rubia tinctorum L.) Root Extract Using Tannin-based Biomordants: Colorimetric, Fastness and Tensile Assay. Fiber. Polym., 2018, 19 (10), 2139-2148.
54. Recep, K., Emine, T., Gökhan, E., Dyeing Properties and Analysis by Rp-Hplc-Dad of Silk Fabrics Dyed with Madder (Rubia tinctorum L). J. Text. Eng., 2014, 4 (2), 1-5.
55. Yusuf, M., Shahid, M., Khan, S. A., Khan, M. I., Islam, S. U., Mohammad, F., Khan, M. A. Eco-Dyeing of Wool Using Aqueous Extract of the Roots of Indian Madder (Rubia cordifolia) as Natural Dye. J. Nat. Fibers, 2013, 10 (1), 14–28.
56. Pour, R. A., He, J., Surface Functionalization of Wool via MicrobialTransglutaminase as Bio-Mordant to Improve Dyeability with Madder in the Presence of Alum. Coatings, 2020, 10(1), 796-807.
57. Bányai, P., Kuzovkina, I. N., Kursinszki, L., Szőke, É., HPLC Analysis of Alizarin and Purpurin Produced by Rubia tinctorum L. Hairy Root Cultures. Chromatographia, 2006, 63, 111-114.
58. Mouri, C., Laursen, R., Identification of anthraquinone markers for distinguishing Rubia species in madder-dyed textiles by HPLC. Microchim. Acta, 2012, 179, 105–113.
59. Kiel, E. G., Heertjes, P. M., Metal Complexes of Alizarin I—The Structure of the Calcium–Aluminium Lake of Alizarin. J. Soc. Dye. Colour., 1963, 79 (1), 21-27.
60. Kiel, E. G., Heertjes, P. M., Metal Complexes of Alizarin II—The Structure of Some Metal Complexes of Alizarin other than Turkey Red. J. Soc. Dye. Colour., 1963, 79(2), 61-64.
61. Jeliński, T., Cysewski, P., Structure and properties of alizarin complex formed with alkali metal hydroxides in methanol solution. J. Mol. Model., 2016, 22 (6), 1-10.
62. Blackburn R. S., Natural dyes in madder (Rubia spp.) and their extraction and analysis in historical textiles. Color. Technol., 2017, 133(6), 449-462.