簡易檢索 / 詳目顯示

研究生: 許君平
Hsu, Chun-Ping
論文名稱: 工作記憶對國小學生學習巢狀迴圈之影響
The Effects of Working Memory on Elementary School Student's Learning Nested Loop
指導教授: 吳正己
Wu, Cheng-Chih
口試委員: 林育慈 張凌倩 吳正己
口試日期: 2021/10/14
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 58
中文關鍵詞: 程式設計巢狀迴圈工作記憶視覺空間模板
英文關鍵詞: programming, nested loop, working memory, visuospatial sketchpad
DOI URL: http://doi.org/10.6345/NTNU202101719
論文種類: 學術論文
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工作記憶是大腦在進行複雜工作時,用來暫存訊息的地方,對學習有重大影響。巢狀迴圈因涉及內、外迴圈結構,在程式執行時,內、外迴圈中的變數及程式執行狀態常需暫存處理;因此,工作記憶顯然會影響學生學習巢狀迴圈概念。本研究主要是探討工作記憶與巢狀迴圈學習成就的關聯。
      參與本研究的實驗受試者為64名國小六年級學生。實驗共實施四節課,前兩節為巢狀迴圈教學,第三節進行迴圈成就測驗,第四節實施工作記憶模型中視覺空間模板的旋轉廣度測驗。實驗結果得到以下結論:(1)單迴圈學習成就與視覺空間模板無顯著相關,(2)簡單巢狀迴圈學習成就與視覺空間模板無顯著相關,(3)複雜巢狀迴圈學習成就與視覺空間模板有顯著正相關。根據研究結果,建議巢狀迴圈教學可根據學生工作記憶能力進行差異化教學;教學設計時,應由淺入深逐步增加迴圈複雜度,並提供學生理解線索,以減輕學生工作記憶負荷。

    Working memory is used to temporarily store and process information when performing complex tasks, which has a significant impact on human learning. Nested loop involves inner and outer loops. When a nested loop program is executed, the variables in the inner and outer loops and the state of program execution need to be temporarily stored. It is obviously that working memory plays a very important role in students’ learning the concept. This study explored the relationship between students’ working memory and their learning achievement of nested loop.
      The subjects of this study were 64 sixth-grade elementary school students. A total of four classes were given to students, two classes of nested loop teaching, one class of loop achievement test, and one class for testing the rotation span of the visuospatial sketchpad in the working memory model. We draw the following conclusions from the experiment: (1) Single loop learning achievement is not significantly related to the visuospatial sketchpad. (2) Simple nested loop learning achievement is not significantly related to the visuospatial sketchpad. (3) Complex nested loop learning achievement has a significant positive correlation with the visuospatial sketchpad. The findings suggested that the nested loop teaching can be differentiated based on the working memory ability of students; and when designing teaching, the materials should be arranged from simple to complex to reduce the working memory load.

    摘 要 i Abstract ii 致 謝 iii 目 錄 iv 附表目錄 v 附圖目錄 vi 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 3 第三節 名詞釋義 3 第二章 文獻探討 5 第一節 程式設計迴圈概念學習 5 第二節 工作記憶 8 第三節 工作記憶與程式設計 11 第三章 研究方法 15 第一節 研究架構 15 第二節 教學規劃 16 第三節 研究工具 18 第四節 資料蒐集與分析 33 第四章 結果與討論 34 第一節 迴圈成就測驗與視覺空間模板之統計分析 34 第二節 單迴圈答題情形分析 36 第三節 簡單巢狀迴圈答題情形分析 38 第四節 複雜巢狀迴圈答題情形分析 43 第五章 結論與建議 48 第一節 結論 48 第二節 建議 49 參考文獻 52 附錄一 巢狀迴圈成就測驗-程式理解紙本題目 58

    桃園市政府教育局(2018)桃園市科技領域國小資訊科技課程教學綱要。
    教育部(2018)。十二年國民基本教育課程綱要科技領域。臺北市:教育部。
    新北市政府教育局(2018)新北市科技領域國小資訊科技課程教學綱要。
    臺北市政府教育局(2018)臺北市科技領域國小資訊科技課程教學綱要。
    蔡進雄(2019)。 未來教育新趨勢—各國程式設計教育的動態。國家教育研究院電子報第 181 期。
    Alloway, T. P. (2009). Working memory, but not IQ, predicts subsequent learning in children with learning difficulties. European Journal of Psychological Assessment, 25(2), 92-98.
    Alloway, T. P., & Passolunghi, M. C. (2011). The relationship between working memory, IQ, and mathematical skills in children. Learning and Individual Differences, 21(1), 133-137.
    Alloway, T. P., Gathercole, S. E., Willis, C., & Adams, A. M. (2004). A structural analysis of working memory and related cognitive skills in young children. Journal of Experimental Child Psychology, 87(2), 85-106.
    Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.
    Baddeley, A. D., & Andrade, J. (2000). Working memory and the vividness of imagery. Journal of Experimental Psychology: General, 129(1), 126.
    Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of Learning and Motivation (Vol. 8, pp. 47-89). Academic press.
    Baddeley, A., Chincotta, D., & Adlam, A. (2001). Working memory and the control of action: Evidence from task switching. Journal of Experimental Psychology: General, 130(4), 641.
    Bednarik, R., & Tukiainen, M. (2006, March). An eye-tracking methodology for characterizing program comprehension processes. In Proceedings of the 2006 Symposium on Eye Tracking Research & Applications (pp. 125-132).
    Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013). Using learning analytics to understand the learning pathways of novice programmers. Journal of the Learning Sciences, 22(4), 564-599.
    Carretti, B., Borella, E., Cornoldi, C., & De Beni, R. (2009). Role of working memory in explaining the performance of individuals with specific reading comprehension difficulties: A meta-analysis. Learning and Individual Differences, 19(2), 246-251.
    Chalmers, K. A., & Freeman, E. E. (2018). A comparison of single and multi-test working memory assessments in predicting academic achievement in children. The Journal of Psychology, 152(8), 613-629.
    Chalmers, K. A., & Freeman, E. E. (2018). Does accuracy and confidence in working memory performance relate to academic achievement in NAPLAN, the Australian national curriculum assessment? Australian Journal of Psychology, 70(4), 388–395. https://doi.org/10.1111/ajpy.12207
    Conway, A. R., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30(2), 163-183.
    Crosby, M., & Stelovsky, J. (1989, January). The influence of user experience and presentation medium on strategies of viewing algorithms. In Vol. II: Software Track, Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences (pp. 438-446).
    Djambong, T., & Freiman, V. (2016). Task-Based Assessment of Students' Computational Thinking Skills Developed through Visual Programming or Tangible Coding Environments. International Association for Development of the Information Society.
    Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19-23.
    Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38-43.
    Guéhéneuc, Y. G. (2009). A theory of program comprehension: Joining vision science and program comprehension. International Journal of Software Science and Computational Intelligence (IJSSCI), 1(2), 54-72.
    Gul, S., Asif, M., Ahmad, S., Yasir, M., Majid, M., Malik, M. S. A., & Arshad, S. (2017). A survey on role of internet of things in education. International Journal of Computer Science and Network Security, 17(5), 159-165.
    Hubber, P. J., Gilmore, C., & Cragg, L. (2014). Quarterly Journal of Experimental Psychology, 67(5), 936-954.
    ISTE, I., & CSTA, C. (2011). Operational Definition of Computational Thinking for K–12 Education. National Science Foundation.
    Jbara, A., & Feitelson, D. G. (2017). How programmers read regular code: a controlled experiment using eye tracking. Empirical Software Engineering, 22(3), 1440-1477.
    Kane, M. J., Conway, A. R., Miura, T. K., & Colflesh, G. J. (2007). Working memory, attention control, and the N-back task: a question of construct validity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 615.
    Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming environments and languages for novice programmers. ACM Computing Surveys (CSUR), 37(2), 83-137.
    Koenemann, J., & Robertson, S. P. (1991, March). Expert problem solving strategies for program comprehension. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 125-130).
    Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005). A study of the difficulties of novice programmers. ACM SIGCSE Bulletin, 37(3), 14-18.
    Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., ... & Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32-37.
    Lin, H., Li, W. P., & Carlson, S. (2019). A privileged working memory state and potential top-down modulation for faces, not scenes. Frontiers in Human Neuroscience, 13, 2.
    Logie, R. H., Gilhooly, K. J., & Wynn, V. (1994). Counting on working memory in arithmetic problem solving. Memory & Cognition, 22(4), 395-410.
    McLean, J. F., & Hitch, G. J. (1999). Working memory impairments in children with specific arithmetic learning difficulties. Journal of Experimental Child Psychology, 74(3), 240-260.
    Miller, B., & Ranum, D. (2012). Problem Solving with Algorithms and Data Structures. Decorah, IA, USA: Runestone Interactive. Retrieved from http://interactivepython.org/courselib/static/pythonds/.
    Miller, G. A., Galanter, E., & Pribram, K. H. (1960). The unit of analysis.
    Nur, I. R. D., Herman, T., & Ningsih, S. (2018, April). Working Memory in Students with Mathematical Difficulties. In IOP Conference Series: Materials Science and Engineering (Vol. 335, No. 1, p. 012114). IOP Publishing.
    Olson, S., & Riordan, D. G. (2012). Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics. Report to the President. Executive Office of the President.
    Peitek, N., Apel, S., Brechmann, A., Parnin, C., & Siegmund, J. (2019, May). CodersMUSE: multi-modal data exploration of program-comprehension experiments. In 2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC) (pp. 126-129). IEEE.
    Saeli, M., Perrenet, J., Jochems, W. M., & Zwaneveld, B. (2011). Teaching programming in Secondary school: A pedagogical content knowledge perspective. Informatics in Education, 10(1), 73-88.
    Sekiya, T., & Yamaguchi, K. (2013). Tracing quiz set to identify novices’ programming misconceptions. In Proceedings of the 13th Koli calling international conference on computing education research - Koli calling ‘13 (pp. 87–95). New York: ACM Press. https://doi.org/10.1145/2526968.2526978.
    Selby, C. C. (2012, November). Promoting computational thinking with programming. In Proceedings of the 7th workshop in primary and secondary computing education (pp. 74-77).
    Shafto, S. A. (1986). Programming for learning in mathematics and science. ACM SIGCSE Bulletin, 18(1), 296-302.
    Shute, V. J. (1991). Who is likely to acquire programming skills? Journal of Educational Computing Research, 7(1), 1-24.
    Simmons, F. R., Willis, C., & Adams, A. M. (2012). Different components of working memory have different relationships with different mathematical skills. Journal of Experimental Child Psychology, 111(2), 139-155.
    Sorva, J., Karavirta, V., & Korhonen, A. (2007). Roles of variables in teaching. Journal of Information Technology Education: Research, 6(1), 407-423.
    Stamovlasis, D., & Tsaparlis, G. (2003). A complexity theory model in science education problem solving: Random walks for working memory and mental capacity. Nonlinear Dynamics, Psychology, and Life Sciences, 7(3), 221-244.
    Stamovlasis, D., & Tsaparlis, G. (2012). Applying catastrophe theory to an information‐processing model of problem solving in science education. Science Education, 96(3), 392-410.
    Stone, J. M., & Towse, J. (2015). A working memory test battery: Java-based collection of seven working memory tasks. Journal of Open Research Software, 3.
    Thurstone, L. L., & Thurstone Th, G. (1968). Aptitudes mentales primarias (PMA) manual.[Examiner manual for the SRA primary mental abilities test]. Madrid, Spain: Tea Ediciones SA.
    Trbovich, P. L., & LeFevre, J. A. (2003). Phonological and visual working memory in mental addition. Memory & Cognition, 31(5), 738-745.
    Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28(2), 127-154.

    下載圖示
    QR CODE